

PRIMAVERA
WebCentral SDK
Manual

Version 1.0

October 2010

PRIMAVERA WebCentral SDK Manual

1

Index
Index .. 1

Introduction ... 4

Overview ... 5

PRIMAVERA WebCentral .. 5

Contents .. 5

Components ... 5

Modules ... 6

A Technical Overview ... 6

A Developer’s View .. 8

PRIMAVERA WebCentral SDK ... 12

Requirements .. 12

Other Resources .. 13

PRIMAVERA WebCentral SDK ... 13

Step-by-Step ... 14

Step 1 – Creating a new module ... 14

Step 1.1 – Creating the base solution ... 14

Step 1.2 – Signing the Assemblies ... 14

Step 1.3 – Publishing the new module .. 15

Step 2 – Creating a new component.. 17

Step 2.1 – Implementing the Business Entity ... 17

Step 2.2 – Implementing the Data Services ... 18

Step 2.3 – Implementing the Business Service ... 18

Step 2.4 – Publishing the components to the Platform ... 19

Step 2.5 – The component’s user control .. 21

Step 2.6 – Compile, deploy and test the modifications made .. 22

Step 3 – The Article Administration Component .. 23

Step 3.1 – Publishing the Article Administration Component ... 24

Step 3.2 – Defining the Master Grid’s Data Source ... 25

Step 3.3 – Creating the Administration Detail User Control .. 26

Step 3.4 – Creating the Administration User Control ... 33

Step 3.5 – Testing the Article Administration Component... 40

Step 4 – Component Customization .. 42

Step 4.1 – Creating an entity to persist the configuration .. 42

Step 4.2 – Configuration support in the business service layer 43

Step 4.3 – Define the Interfaces for Remoting ... 44

PRIMAVERA WebCentral SDK Manual

2

Step 4.4 – Mapping the Remoting to the Business Layer .. 45

Step 4.5 – Creating the Configuration Dialog ... 46

Step 4.6 – Invoking the Configuration Dialog ... 52

Step 4.7 – Applying the Configuration Settings .. 52

Step 4.8 – Testing the Configuration Dialog ... 54

Step 5 – Component Security .. 55

Step 5.1 – Support for the Component Security ... 56

Step 5.2 – Testing the Component Security ... 57

Step 6 – Supporting Multiple Languages .. 58

Step 6.1 – Preparing the business entities for localization .. 58

Step 6.2 – Changes in the Administration Component ... 59

Step 6.3 – Changes in the Visualization Component .. 64

Step 6.4 – Testing the multi-language support ... 65

Step 7 – Supporting Approvals ... 66

Step 7.1 – Preparing the Business Entities for Approvals ... 66

Step 7.2 – Preparing the Data Services for Approvals ... 68

Step 7.3 – Preparing the Business Layer for Approvals .. 69

Step 7.4 – Implementing Approvals in the Module .. 71

Step 7.5 – Implementing Categories in the Module ... 72

Step 7.6 – Updating the Article Administration UI ... 73

Step 7.7 – Testing the Approval and Category Support ... 84

Step 8 – Crystal Reports Integration ... 87

Step 8.1 – Creating a new component for reporting .. 87

Step 8.2 – Creating the Crystal Report document ... 90

Step 8.3 – Testing the Reporting component ... 92

PRIMAVERA ERP Integration ... 93

Overview .. 93

Creating a new Web component for ERP Data Access ... 93

Windows Components ... 96

Frequently Asked Questions ... 97

What does the deployment process do? ... 97

How can I debug my module? .. 97

How do I change the portal’s template? ... 98

How do I create a new layout template? .. 99

Portal Header .. 99

Portal Footer ... 100

Text .. 100

PRIMAVERA WebCentral SDK Manual

3

Links ... 100

Separators ... 101

Headline sections .. 101

Search Sections .. 104

Headlines ... 104

Portal Login .. 104

Portal Login Page... 105

Link List ... 105

Menu ... 106

Content Lists .. 107

Content Options .. 107

Content Headlines ... 107

Forms .. 108

Grids ... 108

Sections ... 109

Appendix ... 110

Appendix 1 – Business Entity Article ... 110

Appendix 2 – Business Service .. 112

Appendix 3 – Article Web User Control (HTML) ... 115

Appendix 4 – Article Web User Control (Code behind) ... 116

Appendix 5 – Article List Web User Control (HTML) ... 118

Appendix 6 – Article List Web User Control (Code behind) ... 119

Appendix 7 – SQL Script for the KnowledgeBase .. 120

Appendix 8 – Article Administration Details Control (HTML) .. 121

Appendix 9 – Article Administration Details User Control (VB) 125

Appendix 10 – Article Administration User Control (HTML) ... 131

Appendix 11 – Article Administration User Control (VB) ... 133

Appendix 12 – PropertyBag Entity Class (ArticleList.vb) ... 138

Appendix 13 – Remoting Layer ArticleList.vb ... 140

Appendix 14 – The Configuration Dialog (ArticleList.vb)... 142

Appendix 15 – Culture Dependent Entity (ArticleCulture.vb)... 146

Appendix 16 – Culture Dependent Entity (ArticleCultures.vb) 148

Appendix 17 – SQL Database Update Script ... 150

Appendix 18 – Approval Workflow (ApprovalInstances.vb) ... 152

Appendix 19 – SQL Database Update Script ... 157

PRIMAVERA WebCentral SDK Manual

4

Introduction
This documentation is part of the PRIMAVERA WebCentral Software Development Kit (SDK),

which allows developers to build and implement customized components which integrate

seamlessly to the PRIMAVERA WebCentral Platform.

The PRIMAVERA WebCentral SDK was in particular targeted for the PRIMAVERA partner

community, to enable and speed up product extensibility and customization for their end-users.

The PRIMAVERA WebCentral SDK consists of various utilities which help developers to build

state-of-the-art components for the PRIMAVERA WebCentral Platform and publish them to the

production environment.

The PRIMAVERA WebCentral SDK can be also a complement of Application Builder solution.

In Application Builder it is possible to build an entity model. After publishing this model, code is

auto-generated and made available, in the PRIMAVERA WebCentral structure. However, with this

tool it is not possible to customize forms at a layout level and make business rules.

In this document you will find valuable background information, a step-by-step example of how

to build a customized component for the PRIMAVERA WebCentral Platform and a reference of the

most common gotchas. It will provide you a guide and reference whenever you plan to develop

customized components to extent the out-of-the-box features of PRIMAVERA WebCentral.

PKB

 How to develop a Connector? (Application Builder)

 How to develop a Connector? (Workflow Designer)

http://www.primaverabss.com/pkb/PortalRender.aspx?PageID=04a1c96b-cc48-4f46-961b-dda93e36ace6&KBCategoryID=532b06e2-a125-11de-a319-00155d50c867&KBItemID=9dfe09c3-613b-40f6-9a4a-0f00d0342063
http://www.primaverabss.com/pkb/PortalRender.aspx?PageID=e42fbca7-fea6-4a84-a9c2-9a346bdd7433&KBCategoryID=a5d93a5b-a121-11de-a319-00155d50c867&KBItemID=7eedbf1f-d086-460b-8949-4719dc69ce26

PRIMAVERA WebCentral SDK Manual

5

Overview
Chapter 1 – Gives a general, technical overview about the product itself. Here you will find

information about the product structure, installation, operation and the SDK utilities.

Chapter 2 – Step-by-Step example on how to build a module for PRIMAVERA WebCentral.

Chapter 3 – Discusses the integration of the PRIMAVERA ERP.

Chapter 4 – Frequently Asked Questions.

Chapter 5 – Source Code used to build the step-by-step example.

PRIMAVERA WebCentral
In a time of digitalization and optimization of business processes, the use of internet and intranet

is getting more and more important. Organizations are searching solutions to easily share

information between various communities, such as employees, partners and clients, which for

themselves reside in very different locations. Information need to be available 24 hours and 7

days a week at any possible locality.

The PRIMAVERA WebCentral provide a solution for this problem. It implements a community

based security model which increases productivity and prevents from a disorganized way of

searching information. It provides components that promote employees, partners and clients to

quickly solve their daily tasks and problems, such as marking employee holidays, enter

organizational requests, dispense records, ordering products, etc, with direct connection to the

PRIMAVERA ERP solution. It provides customizable, multi-level workflows for approvation as well

as support for any language that you might want to target your portal to.

PRIMAVERA WebCentral is a platform for content management, which facilitates the creation of

various portals, each orientated to their specific audience, sharing information targeted to any of

these audiences but always having an easy way to administrate this information, like events,

messages, press-releases, etc.

PRIMAVERA WebCentral is a platform for collaboration. It includes features to promote

automatization, business workflow and approvation based on a web interface.

PRIMAVERA WebCentral is a platform for integration of any kind of content, including

components that were developed by third party companies to extent existing components and

help managing business processes using the internet or intranet as communication channel to

reach employees, clients or partners.

Contents

We understand the content as output of a component’s execution. The output allows the user to

browse through existing content (for example visualization of messages), or manage new or

already existing content (content administration: for example inserting a new message to be

shown). As for PRIMAVERA, there is no better definition for content as everything is content,

since it is managed by components that are compatible with the PRIMAVERA WebCentral

Platform.

Components

Understand Components as small applications that generate new -and visualize existing

contents. Imagination is the only limitation for developing new components. Imagine a

component that obtains the current weather report for a selected city, using a Web service and

displays this information in the client’s browser, or a component that allows to list accounting

PRIMAVERA WebCentral SDK Manual

6

details for a customer we selected but also components to introduce, publish and visualize press

communications referring to your company.

Components can be designed and developed by any person that has knowledge of how to

develop web applications using the Microsoft .NET Framework. This is by far the only and most

important requirement needed for developing components for the PRIMAVERA WebCentral

Platform.

Modules

Modules that are developed for the PRIMAVERA WebCentral Platform expose various

components. Most probably, in the beginning, you’ll have difficulties distinguish between

Modules and Components, but soon you’ll understand that a module is one Visual Studio

Solution, which exposes various components for the PRIMAVERA WebCentral Platform.

Take, for example, the base solution of PRIMAVERA WebCentral and you’ll see the following

modules, each one exposing categorized components:

Administration Components to administrate PRIMAVERA WebCentral (security,

categories, approvals, etc.)

Productivity Components that will help you to quickly design your portals pages,

such as multimedia components, HTML components, downloads,

events, forms, polls, etc.

Human Resources Components that can be used to connect PRIMAVERA WebCentral to the

PRIMAVERA ERP and implement an employee “self-service”, for

example to mark holidays, print salary receipts, government tax

declaration, etc.

Account Receivables Components that can be used to connect PRIMAVERA WebCentral to the

PRIMAVERA ERP and show account receivable information for a client.

Sales Components, connected to the PRIMAVERA ERP that show sells

information as well as the B2B shopping-cart component.

A Technical Overview

The installation directory

The PRIMAVERA WebCentral Platform is normally installed and configured in one of the default

Internet Information Services (IIS) directories under the c:\inetpub\wwwroot\WebCentral

folder. You can find the following type of files in the installation directory:

\Bin Contains all assemblies that are necessary to run the web based user

interface for the PRIMAVERA WebCentral Platform.

\Modules Contains all registered modules for the PRIMAVERA WebCentral Platform.

There are several subfolders, each subfolder contains all necessary files

for the module (dll, html, aspx, ascx, etc)

\UserFiles All files that are uploaded by users end up here. There is a general

division of images and documents – each file type has its own folder.

PRIMAVERA WebCentral SDK Manual

7

\SystemFiles As the name already says, this folder contains system files that are not

directly used by the PRIMAVERA WebCentral Platform, such as commonly

used images, java script files and email notification templates.

\WebTemplates Templates that define the visual appearance of the PRIMAVERA

WebCentral. Here you will find various predefined templates which consist

of custom style sheets (CSS) and images. You also can create new

templates to customize the portals appearance, based on one of these

templates.

\Tools Various helpful tools such as the instance configuration tool, site

administrator and module registrar.

Files like custom style sheets and HTML, ASPX and ASCX files can freely be modified to change

the websites behaviour or appearance, but please consider backing them up as they will be

overwritten with any future installation or update.

The Database

All portal information, such as web pages, components, security roles, approvals, contents are

stored in a SQL Server database. This is the reason why you should create a database

management plan to regularly backup, reindex and defragment this database. An optimized

database often can speed up the rendering of a webpage by 100% and you’ll always have the

benefit of a backed up database. Consult the SQL Server Books Online on how to create a

Database Management Plan for your database.

The name of the database used by PRIMAVERA WebCentral is ePrimavera by default. If you are

running more than one PRIMAVERA WebCentral instance, the non-default instance database will

be named ePrimavera_xpto where xpto stands for the name of the instance.

The PRIMAVERA WebCentral Services

Time consuming tasks, like for example broadcasting notifications, are implemented by the

PRIMAVERA WebCentral Services. You can control the PRIMAVERA WebCentral Services by

opening the system’s Management Console (Control Panel | Administrive Tools | Services |

PRIMAVERA WebCentral Services).

PRIMAVERA WebCentral SDK Manual

8

You should stop and disable this service on your development machine whenever not needed, as

it uses resources that could block some files from being deployed.

A Developer’s View

The PRIMAVERA WebCentral modules are essential parts for developing components for the

PRIMAVERA WebCentral Platform. One module exposes the following functionalities for the

PRIMAVERA WebCentral general architecture:

 Components that implement certain functionality and can be placed and rendered by one or

many portals pages.

 A module can implement functionality which can be inherited and used by other existing

modules or components.

 A module or component can use all or parts of the functionality offered by the PRIMAVERA

WebCentral Platform (such as security, mappings and approvals).

 Modules group and categorize components that are inter-connected with them selves in a

way that a user can find them easily.

PRIMAVERA WebCentral SDK Manual

9

A single module, which exposes one or more components for the PRIMAVERA WebCentral,

consists of one single Visual Studio 2008 solution having 8 or 9 Visual Studio 2008 projects,

which are organized the following way:

WebUI Web-based user interfaces. These User Controls are usually used to

render contents for the client interface (HTML)

WinUI Windows Forms based user-interfaces. These dialogs are usually used for

content or component administration purposes.

IRemoting Remoting Interfaces (see also Remoting)

Remoting Remoting Layer. Windows Forms based user-interfaces use remoting to

communicate between Client and Server. These classes implement the

contract defined by the remoting interfaces. They generally to map the

implemented methods to the Business Layer.

Entities Business Entity Layer. This project should contain all entity classes used

throughout the module. Entity classes should only expose properties – no

business logic (public methods) should be implemented here.

Business Business Layer. All business rules should be implemented here.

Data Data Layer. This layer implements the data access to the specified

database management system. It is best practise to locate all methods

that perform direct data access in this Visual Studio project.

Modules PRIMAVERA WebCentral Contract project. This project contains classes

that interact with the PRIMAVERA WebCentral and exposes information

about your module and your module’s components, approvals, categories,

etc, to the PRIMAVERA WebCentral Platform.

Workflow This project exposes the events and activities (Create, Remove, Update

and Delete) associated to the Business Entity Layer. This connector can

be used by Workflow Designer solution to create processes.

PRIMAVERA WebCentral SDK Manual

10

User Interface Layer

The user interface layer consists of two .NET assemblies targeting the web and the windows

forms user interface (WebUI and WinUI). Whenever possible you should consider using HTML

user interfaces to visualize and manage components, as they are less error-prone due

configuration problems, easier to develop and target all operating system platforms. However,

you might need to implement Window Forms user interfaces to configure the components

appearance in the Site Adminstration utility. For example, by the time you place a component

onto a portal’s page, optionally you can ask the user to configure its appearance – this

configuration needs to be done as Windows Forms Dialog.

The WebUI project implements all components that are shown in the client’s browser, or let’s say

HTML. These can be any kind of component, like managing the content or visualizing the content.

Web-based component’s are usually implemented as plain ASP.NET user control (ascx), but

inherit specific methods from the PRIMAVERA WebCentral Platform base class

WebComponentBase.

Remoting Layer

The remoting layer, which is implemented by the assemblies IRemoting and Remoting, is

necessary to achieve communications between client and server whenever working with Windows

Forms-based user interfaces. In this case, the user interface is hosted in the browser (like an

ActiveX control) on the client machine, whereas the engine (business layer) is running on the

web server. Remoting is used to tunnel all communications between client user interface and

servers business layer.

The IRemoting assembly defines the contract between the code that runs on the client and the

code that runs on the web server. The actual implementation of this contract is only available on

the web server. The following segment shows a typical example of how to code a components

interface:

 Public Interface ICompFlashPlayers

 Function Exists(ByVal RemoteContext As RemoteEngineContext, _

 ByVal ID As System.Guid) As System.Boolean

 Function Edit(ByVal RemoteContext As RemoteEngineContext, _

 ByVal ID As System.Guid) As Entities.CompFlashPlayer

 Function Clone(ByVal RemoteContext As RemoteEngineContext, _

 ByVal ID As System.Guid) As System.Guid

 Sub Update(ByVal RemoteContext As RemoteEngineContext, _

 ByRef CompFlashPlayer As Entities.CompFlashPlayer)

 Sub Remove(ByVal RemoteContext As RemoteEngineContext, _

 ByVal ID As System.Guid)

 End Interface

The Remoting assembly implements the contract IRemoting and will be run on the web

server and generally maps to methods implemented by the Business project of the module. A

typical implementation of a remoting component is shown by the following code segment:

PRIMAVERA WebCentral SDK Manual

11

 Public Class CompFlashPlayers

 Inherits Engine.Remoting.RemoteServiceBase

 Implements ICompFlashPlayers

 Public Function Clone(ByVal RemoteContext As

Engine.IRemoting.RemoteEngineContext, _

 ByVal ID As System.Guid) As System.Guid

Implements IRemoting.ICompFlashPlayers.Clone

 Dim BSO As New Business.CompFlashPlayers

 Return BSO.Clone(RemoteContext.EngineContext, ID)

 End Function

 Public Function Edit(ByVal RemoteContext As

Engine.IRemoting.RemoteEngineContext, _

 ByVal ID As System.Guid) As Entities.CompFlashPlayer

Implements IRemoting.ICompFlashPlayers.Edit

 Dim BSO As New Business.CompFlashPlayers

 Return BSO.Edit(RemoteContext.EngineContext, ID)

 End Function

 Public Function Exists(ByVal RemoteContext As

Engine.IRemoting.RemoteEngineContext, _

 ByVal ID As System.Guid) As Boolean

Implements IRemoting.ICompFlashPlayers.Exists

 Dim BSO As New Business.CompFlashPlayers

 Return BSO.Exists(RemoteContext.EngineContext, ID)

 End Function

 Public Sub Remove(ByVal RemoteContext As Engine.IRemoting.RemoteEngineContext,

_

 ByVal ID As System.Guid) Implements IRemoting.ICompFlashPlayers.Remove

 Dim BSO As New Business.CompFlashPlayers

 BSO.Remove(RemoteContext.EngineContext, ID)

 End Sub

 Public Sub Update(ByVal RemoteContext As Engine.IRemoting.RemoteEngineContext,

_

 ByRef CompFlashPlayer As Entities.CompFlashPlayer)

Implements IRemoting.ICompFlashPlayers.Update

 Dim BSO As New Business.CompFlashPlayers

 BSO.Update(RemoteContext.EngineContext, CompFlashPlayer)

 End Sub

 End Class

Business Entities, Business Services and Data Services

The Business Entities, Business Services and Data Services assemblies implement the 3-tier

layers that generally are used in all PRIMAVERA Applications.

PRIMAVERA WebCentral SDK Manual

12

PRIMAVERA WebCentral Modules Contract Layer

The Modules assembly contains classes that identify the module as developed for the PRIMAVERA

WebCentral Platform and exports contractual information about the module as well as all

implemented components.

The following information will be implemented in the modules assembly:

 Information about the module (name, description, author, version)

 All components implemented by this module as well as their attributes

 Category types used for the implemented components (optional)

 Properties for the approval rules (optional)

 Mapping information to integrate with the PRIMAVERA ERP (optional)

Some parts of these definitions are required and must follow the specified rules to successfully

integrate the module to the PRIMAVERA WebCentral Platform (for example, information about

the module) – other parts are optional and only need to be considered if necessary.

PRIMAVERA WebCentral SDK
The PRIMAVERA WebCentral SDK’s goal is to facilitate the conception, development and

maintenance of customized modules for the PRIMAVERA WebCentral. This product was conceived

especially, to enable partners to customize and extend the WebCentral base (or the model

developed in Application Builder) solution and find an approach to all the specific requirements

and needs for the final client. You should consider PRIMAVERA WebCentral as an open platform

to integrate new modules in a simple and efficient way, and the PRIMAVERA WebCentral SDK is

the key to that. The WebCentral SDK consists of:

 A detailed documentation which outlines the concepts of the PRIMAVERA WebCentral and a

step-by-step introduction on how to build customize modules.

 A set of templates for explaining how to use the most important functionality exposed by the

PRIMAVERA WebCentral (for example: security, approvals and categories).

 A set of tools that are used by PRIMAVERA to develop and deploy customized solutions that

integrates with PRIMAVERA WebCentral.

Requirements
Before starting designing and developing components for the PRIMAVERA WebCentral you should

be aware of the minimum requirements to be met:

Hardware Requirements

 Intel or compatible Pentium 4 (1600 MHz or above)

 1024 x 768 screen resolution

 2048 memory of RAM

 1GB space on the hard disk

Software Requirements

 Microsoft Windows XP, Microsoft Windows 2003 Server or newer

 Microsoft Internet Information Services 6 or newer

 Microsoft Visual Studio 2008 and NET Framework 3.5 SP1

PRIMAVERA WebCentral SDK Manual

13

 Microsoft SQL Server 2000 or newer

Please note that the Internet Information Services (IIS) should be installed before installing the

Microsoft .NET Framework. Also note that if using IIS 7 or newer you must select the following

options from the IIS install components:

Other Resources
Other additional important resources on how to develop Microsoft ASP.NET solutions are:

Microsoft ASP.NET http://www.asp.net/

Microsoft SQL Server http://www.microsoft.com/sql/

Microsoft SQL Server Developer Center http://msdn.microsoft.com/sqlserver/

Microsoft Visual Basic Developer Center http://msdn.microsoft.com/vbasic/

Microsoft Developer Network http://msdn.microsoft.com/

PRIMAVERA WebCentral SDK
The PRIMAVERA WebCentral SDK is installed automatically with PRIMAVERA WebCentral setup.

The installation process copy files to the following folder:

\SDK Assemblies for the WebCentral Platform

PKB

 Installation Manual - WebCentral

http://www.asp.net/
http://www.microsoft.com/sql/
http://msdn.microsoft.com/sqlserver/
http://msdn.microsoft.com/vbasic/
http://msdn.microsoft.com/
http://www.primaverabss.com/pkb/PortalRender.aspx?PageID=e42fbca7-fea6-4a84-a9c2-9a346bdd7433&helptopicID=31063

PRIMAVERA WebCentral SDK Manual

14

Step-by-Step
This chapter will explain – step by step – how to create a module for the PRIMAVERA WebCentral

Platform. The module we will create during this chapter contains various components and should

serve you as introduction on how to create your own module for your own specific needs.

Step 1 – Creating a new module

Step 1.1 – Creating the base solution

By default, PRIMAVERA WebCentral have available one project, “Primavera.BusinessModel”, that

we can deploy under Application Builder. But we can create more projects and also use the

Application Builder.

Like referred earlier in this manual, a base solution for a module consist of 8 projects (can go up

to 10 if Workflow and ERM connectors are to be included).

PKB

 Application Builder

Step 1.2 – Signing the Assemblies

All assemblies for the PRIMAVERA WebCentral Platform must be correctly signed using the strong

name (sn.exe) utility from the Visual Studio 2008 Command Prompt. By inserting the attributes

AssemblyKeyFile, AssemblyKeyName e AssemblyDelaySign to the file AssemblyInfo.vb

of each solution’s project, the PRIMAVERA WebCentral SDK Addin already prepared all generated

assemblies to be signed by adding the attributes:

 #If DEBUG Then

 <Assembly: AssemblyKeyFile("C:\PRIMAVERA.Public.snk")>

 <Assembly: AssemblyDelaySign(True)>

 #Else

 <Assembly: AssemblyKeyName ("PRIMAVERA")>

 <Assembly: AssemblyDelaySign(False)>

 #End If

http://www.primaverabss.com/pkb/PortalRender.aspx?PageID=e42fbca7-fea6-4a84-a9c2-9a346bdd7433&helptopicID=19051

PRIMAVERA WebCentral SDK Manual

15

These attributes define the assembly’s signature and identity the manufacturing company. Each

manufacturing company will create its own key file and substitute these values. What we need to

do now, is creating the key file and register it on the development machine.

Create the following steps to create the key file and register it on the development machine:

 Open up the Visual Studio .NET command line prompt (Start | All Programs | Microsoft

Visual Studio 2008 | Visual Studio Tools | Visual Studio 2008 Command Prompt) and

type in the following commands.

sn -k C:\<Company>.Public.Private.snk

sn -p C:\<Company>.Public.Private.snk C:\<Company>.Public.snk

Please substitute <Company> with the name of your company and keep in mind that the

AssemblyKeyFile attribute in the AssemblyInfo.vb files in all projects must match this

filename.

 Register the created key on the development machine by typing in following commands:

sn -tp C:\<Company>.Public.snk

sn -Vr *,XXXXXXXXXXXX

Where XXXXXXXXXXXX needs to be substituted by the value that resulted from the

execution of the previous command.

Attention:

The described procedure only needs to be done on the development machine – however you

need to remember that someday you’ll compile a RELEASE version of the developed module and

deploy it to the production server. In this case, you will need to copy the file

C:\<Company>.Public.Private.snk to the production server and install the key using the following

command:

 sn -i C:\<Company>.Public.Private.snk <Company>

For more information about signing NET assemblies, please visit http://msdn.microsoft.com

These files are automatically generated by Application Builder.

Step 1.3 – Publishing the new module

Now that we have created the base solution, defined the module’s attributes and created the key

file for signing the assemblies we are ready to test-drive the new module. The new module now

should be compilable and deployable to the PRIMAVERA WebCentral Platform, even though it

does not export any components yet. Anyway, we’d like to see the new module integrated, and

check if everything is fine so far, so we proceed with the following steps:

 Use Visual Studio .NET to compile the whole solution in DEBUG mode.

http://msdn.microsoft.com/

PRIMAVERA WebCentral SDK Manual

16

 Close Visual Studio .NET and run the utility eModuleDeploy, which you can find in the

operating system’s start menu Program Files | PRIMAVERA | WebCentral | SDK |

eModuleDeploy.

 Indicate the location of your module’s Visual Studio solution

 It is recommended to activate always the options Executar IISRESET and Executar

eModulesUpdate to guarantee the success of the operation. The option Limpar GAC

should always be activated if you modified something in the WinUI project. Click on Publicar

when you finished the configuration and to start the deployment process.

 After the module has been deployed, run the PRIMAVERA WebCentral Site Administrator and

launch the Portal Designer to check that the new component is available, even though, it

does not have any components yet.

Attention:

The deployment of a module will execute the following steps:

 Execute a restart of the Microsoft Internet Information Service (iisreset), which releases

resources that might cause the deployment process to fail.

PRIMAVERA WebCentral SDK Manual

17

 Copy all module’s assembly files, as well as *.aspx and *.ascx files to the PRIMAVERA’s

WebCentral installation folder (in our example, they will be copied to the subfolder

Modules/Primavera.KnowledgeBase).

 Register the module information in the PRIMAVERA WebCentral database.

 Clean up the global assembly download cache – important for the WinUI assemblies which

reside in this cache.

Step 2 – Creating a new component
In this chapter we will create two new components for our module Primavera.KnowledgeBase.

These two new components will be created as web user controls, one for listing all existing

articles and one for viewing the details for a selected article.

Step 2.1 – Implementing the Business Entity

A business entity (BE) encapsulates all attributes of entity, in this case an article for our

KnowledgeBase. A business entity only contains private attributes and public properties to gain

access to the private attributes. This class will be utilized in all modules’ project to store and

transport information about an article of the KnowledgeBase.

 Add a new class named Article to the project Primavera.KnowledgeBase.Entities

 Implement the business entity class Article as shown in Appendix 1 [Page 110]

The class diagram on the right is the graphical representation of the class

we just implemented. You should keep in mind that all business entities

should inherit from the BusinessEntityBase class, which is provided by

the PRIMAVERA WebCentral Platform. The PRIMAVERA WebCentral Platform

also will take care of the business entities’ serialization and deserialization

to and from the database. The parameters of the BusinessEntityAttribute

will specify name of the SQL Server table and a unique identifier for the

business entity. The code fragment

 <Serializable(), BusinessEntityAttribute("KNB_Articles", "…")> _

 Public Class Article

 Inherits BusinessEntityBase

will tell the PRIMAVERA WebCentral Platform to serialize the entities data to a SQL table named

KNB_Articles, which we will create later on in this chapter. Also, you already specified the

property/table column mapping. The BusinessEntityField attribute, which you can find in front

of a properties declaration, will tell the PRIMAVERA WebCentral Platform in which SQL Server

column the data should be stored. Take for example the Author property:

 <BusinessEntityField("Author")> _

 Public Property Author() As String

 Get

 Return m_author

 End Get

 Set(ByVal Value As String)

PRIMAVERA WebCentral SDK Manual

18

 m_author = Value

 End Set

 End Property

The BusinessEntityField attribute’s value Author will inform the PRIMAVERA WebCentral

Platform to serialize the entities value to the Author column of the KNB_Articles table.

Step 2.2 – Implementing the Data Services

The Data Services project consists exclusively of classes that implement the data access to the

SQL Server database and are called only by the Business Server layer. We’ll implement all

functionality that is needed to realize the data access, such as load, save and remove records

from a table in the database. There isn’t too much to do, though, as we inherit most of the

functionality from the base class DataServiceBase.

 Add a new class called Article to the Primavera.KnowledgeBase.Data project.

 Implement the new class Article using the following code

 Imports Primavera.Platform.Engine.Data

 Imports Primavera.KnowledgeBase.Entities

 <DataServiceAttribute(GetType(Entities.Article))> _

 Public Class Articles

 Inherits DataServiceBase

 End Class

As you see, there’s not too much implementation to do here. All code that is necessary for the

standard data access is already implemented in the base class DataService. However, if you

need to customize the behaviour, you can use standard object oriented principles like overriding

methods of the base class.

Step 2.3 – Implementing the Business Service

The business services (BS) implement the components business rules and serves as intermediate

layer between user interface and data service layer. Here we will place code that is based on the

data service layer and business entities layer. Its methods will be called from the two user

interface layer – WebUI and WinUI.

 Add a new class called Articles to the Primavera.KnowledgeBase.Business project.

 Implement the business entity class Article as shown in Appendix 2 [Page 112].

 Analyse the code.

The next thing to do is to create a proxy class, which will provide a central access point to all

business services objects. That way, the user interface code won’t need to worry about declaring

and instantiate an object from type Article. They simply call a static method which devolves a

correctly instantiated Article object.

 Add a new class called Proxy to the Primavera.KnowledgeBase.Business project.

PRIMAVERA WebCentral SDK Manual

19

 Implement the new class Proxy using the following code

Public Class Proxy

 Inherits Primavera.Platform.Engine.Business.BusinessEngineBase

 Public ReadOnly Property ModuleID() As Guid

 Get

 Return New Guid("{5373dc00-2326-4ed6-b72f-aa5ead4cdcd1}")

 End Get

 End Property

 Public Shared Function Articles() As Business.Articles

 Return New Business.Articles

 End Function

End Class

Step 2.4 – Publishing the components to the Platform

The next modifications are necessary to publish the modules new components to the PRIMAVERA

WebCentral Platform. The PRIMAVERA WebCentral Platform will call objects from the

Primavera.KnowledgeBase.Modules project to retrieve information about the components

this module provides. We will need to implement the necessary code for that the Platform

recognizes the components we’ll provide.

 Edit the file ComponentsIds.vb, which resides in the folder Components in the project

Primavera.KnowledgeBase.Modules. As, later on, we will create two new components for

the new module, we insert the implementation of two new properties:

 Public Shared ReadOnly Property KnowledgeBaseArticle() As Guid

 Get

 Return New Guid("{B6B669F2-35B2-43a1-A03D-7325EEB2B082}")

 End Get

 End Property

 Public Shared ReadOnly Property KnowledgeBaseArticleList() As Guid

 Get

 Return New Guid("{9763FE71-A201-42f6-BFF9-01E9A3449AE0}")

 End Get

 End Property

 Edit the file Components.vb, which also resides in the folder Components in the project

Primavera.KnowledgeBase.Modules.

 Locate the method List. Here we will need to implement the code necessary to inform the

PRIMAVERA WebCentral Platform about the existence of our 2 new components:

PRIMAVERA WebCentral SDK Manual

20

 Public Function List(ByVal ComponentType As ComponentType) As ServiceList

Implements IComponents.List

 Dim objCol As New ServiceList

 If (ComponentType = ComponentType.Administration) Then

 ElseIf ComponentType = ComponentType.Publishing Then

 objCol.Add(ComponentsIDs.KnowledgeBaseArticle, "Article Detail")

 objCol.Add(ComponentsIDs.KnowledgeBaseArticleList, "Article List")

 End If

 Return objCol

 End Function

 The List method’s purpose is only to inform the PRIMAVERA WebCentral Platform about the

existence of the 2 new components. Further details about each component will be introduced

in the method Edit, which resides in the same file Components.vb. Modify this method the

following way:

 Public Function Edit(ByVal WinContext As WinContext, ByVal ComponentID As

System.Guid) _

 As Component Implements IComponents.Edit

 Dim objComp As New Component

 If ComponentID.Equals(ComponentsIDs.KnowledgeBaseArticle) Then

 objComp.Name = "Article Detail"

 objComp.Description = "Component for showing a knowledge base article"

 objComp.ComponentClass = "Article"

 objComp.RequiresEnterprise = False

 objComp.IconIndex = 0

 objComp.BackgroundOpaque = True

 objComp.AllowsFrame = True

 objComp.ComponentSecurity = False

 ElseIf ComponentID.Equals(ComponentsIDs.KnowledgeBaseArticleList) Then

 objComp.Name = "Article List"

 objComp.Description = "Component for a list of articles"

 objComp.ComponentClass = "ArticleList"

 objComp.RequiresEnterprise = False

 objComp.IconIndex = 0

 objComp.BackgroundOpaque = True

 objComp.AllowsFrame = True

 objComp.ComponentSecurity = False

 End If

PRIMAVERA WebCentral SDK Manual

21

 objComp.ID = ComponentID

 Return objComp

 End Function

As you can imagine, the PRIMAVERA WebCentral Platform will call this method to initialize the

components properties, whenever a component is placed on some webpage. In this method you

will define if the component requires a connection to the Primavera ERP, if the security system

should be supported, which icon should be displayed for the component, etc.

Attention:

Special attention while defining the value for the ComponentClass property of the component’s

object: The value of this property will determine the name of the web user control (ascx), which

will be used by the PRIMAVERA WebCentral Platform to show the component. In this example,

we will create web user controls named Article.ascx and ArticleList.ascx. The specified values

for these properties need to match the names of the web user control class.

Step 2.5 – The component’s user control

Until now, we have implemented the business entity, the business service, the data service layer

as well as the code necessary for the PRIMAVERA WebCentral Platform to recognize the new

component. Now we’ll do the part that the actual user will see: The web-based user interface.

 In the project Primavera.KnowledgeBase.WebUI, create a new folder named

Components. In this new folder, create a new web user control and name it Article.ascx.

Change the designer view to HTML view and implement the web user control as shown in

appendix 3 [page 115]

 Open the code behind file for the web user control Article.ascx and implement the code as

shown in appendix 4 [page 116].

 Create another web user control in the same folder, named ArticleList.ascx. Change the

designer to HTML and implement the web user control as shown in appendix 5 [page 118].

 Open the code behind file for the web user control ArticleList.ascx and implement the code

as shown in appendix 6 [page 119]. Have special attention while implementing the method

GetDetailPageUrl:

 Public Function GetDetailPageUrl(ByVal articleId As Guid) As String

 Dim guidCompArticleDetail As Guid = New Guid("B6B669F2-35B2-43a1-A03D-

7325EEB2B082")

 Return String.Format("ComponentRender.aspx?ComponentID={0}&ArticleID={1}",

guidCompArticleDetail, articleId)

 End Function

 The above method is called to generate an URL to navigate to the article detail component

while browsing the article list. The static identifier specified for the local variable

guidCompArticleDetail needs to match the identifier for the Article component. You can

copy and paste this identifier from the file ComponentsIds in the

Primavera.KnowledgeBase.Modules project.

PRIMAVERA WebCentral SDK Manual

22

Step 2.6 – Compile, deploy and test the modifications made

To see the final result of the steps described in these last paragraphs we will need to compile the

new module and deploy it to the PRIMAVERA WebCentral Platform.

 Use the Visual Studio 2008 IDE to compile the solution in DEBUG mode.

 Run the eModuleDeploy utility, which you will find in the Tools folder of the PRIMAVERA

WebCentral SDK.

 Indicate the complete filename of our module’s solution and start the deployment process.

 The current solution already will try to read articles for the Knowledge Base from the

database which was indicated while initializing the WebCentral Instance (ePrimavera by

default). What we will need to do now, is creating the table structure and inserting some

sample data to these tables. Please open up SQL Query Analyzer (or any other tool that

permits the execution of SQL commands) and enter the SQL script you can find in Appendix

7 [page 120]. Execute this script on the WebCentral Database.

 Open up the Site Administrator application and navigate to the Portal Designer. Double-click

on the Intranet portal. Create a new folder called KnowledgeBase and a new page called

Article List. Place the new component Article List on this new page.

 Change to preview mode and you should see a list of two articles, which we created

previously using the SQL scripts.

PRIMAVERA WebCentral SDK Manual

23

 Click on the link of one listed article and you should see the article’s details.

Step 3 – The Article Administration Component
This chapter will show how to implement an administration component for the KnowledgeBase

module. It will demand typing quite a lot code, both HTML as well as Visual Basic.NET, but soon

you will see that this example introduces you to some important concepts and shows you how to

reuse some of the controls that are provided by the PRIMAVERA WebCentral Platform.

Let’s recapitulate the requirements for this control:

 A grid control will show all already existing articles

PRIMAVERA WebCentral SDK Manual

24

 It must be possible to insert new records as well as edit, remove and clone existing records

 It must be possible to edit all articles’ properties, such as author, title, publishing date,

image and the articles body.

All these requirements should be split into two user controls: One user control handles the

master grid view, which shows all existing records, and one user control handles the articles’

details. In fact, this way we can place the details user control into the master grid user control,

and simply hide/ show the controls depending on the current mode. For example: If the

administration control is in mode consultation, the master grid control will be shown and the

details control will be hidden. If the user wishes to edit an existing record, the master grid

control will be hidden, and the details control will be correctly initialized and shown to the user.

Step 3.1 – Publishing the Article Administration Component

The administration component, which we will try to implement in this chapter, is a regular

component, which is published the same way we already did before. Just with one little

difference. As you see in the component selection dialog, in the Portal Designer, PRIMAVERA

WebCentral differentiate between Publishing and Administration components. We now are going

to publish an administration component:

 Open the file ComponentsIds.vb, which you can find in the folder Components in the

project Primavera.KnowledgeBase.Modules.

 Create a new shared, read-only property, which uniquely defines the new component:

 Public Shared ReadOnly Property KnowledgeBaseArticleAdmin() As Guid

 Get

 Return New Guid("{079DD2BA-F511-40a5-9360-2154DD8D6F27}")

 End Get

 End Property

 Open the file Components.vb, which also resides in the folder Components in the project

Primavera.KnowledgeBase.Modules.

 Complete the method List, which we already edited before, to support the new

administration component:

 Dim objCol As New ServiceList

 If (ComponentType = ComponentType.Administration) Then

 objCol.Add(ComponentsIDs.KnowledgeBaseArticleAdmin, "Article

Administration")

 ElseIf ComponentType = ComponentType.Publishing Then

 objCol.Add(ComponentsIDs.KnowledgeBaseArticle, "Article Detail")

 objCol.Add(ComponentsIDs.KnowledgeBaseArticleList, "Article List")

 End If

 We now need to implement the component’s detailed attributes. The method Edit is the right

place to do so. Insert the following code in the ElseIf path to the already existing if control

path.

 ElseIf ComponentID.Equals(ComponentsIDs.KnowledgeBaseArticleAdmin) Then

 objComp.Name = "Article Administration"

PRIMAVERA WebCentral SDK Manual

25

 objComp.Description = "Component for Article Administration"

 objComp.ComponentClass = "ArticleAdmin"

 objComp.RequiresEnterprise = False

 objComp.IconIndex = 0

 objComp.BackgroundOpaque = True

 objComp.AllowsFrame = True

 objComp.ComponentSecurity = False

Now we already have exported the new component, which does not exist yet, but we’re getting

there…

Step 3.2 – Defining the Master Grid’s Data Source

Before we begin with defining the user interface for the master grid control and the articles’

detail control, let’s define on what should appear in the master’s data grid. The PRIMAVERA

WebCentral Platform provides so called table filters for this purpose. Table Filters are

implemented in the Modules project, and define which columns should appear in a data grid, as

well as how they should be sorted and filtered. To implement a table filter:

 Open the file TableFiltersIDs.vb, which you can find in the folder TableFilters in the

project Primavera.KnowledgeBase.Modules.

 Create a new shared, read-only property, which uniquely defines the new table filter:

 Public Shared ReadOnly Property ArticleTableFilter() As Guid

 Get

 Return New Guid("25662350-E994-45dd-9C75-340AA517357D")

 End Get

 End Property

 Open the file TableFilters.vb, which also resides in the folder TableFilters in the project

Primavera.KnowledgeBase.Modules.

 We now need to implement the table filter’s detailed attributes. This is done in the method

Edit, which is called by the PRIMAVERA WebCentral Platform. Take a look at the following

code segment and its code remarks:

 Public Function Edit(ByVal TableFilterID As Guid) As TableFilter Implements

ITableFilters.Edit

 Dim tableFilter As TableFilter = Nothing

 If TableFilterID.Equals(TableFiltersIDs.ArticleTableFilter) Then

 tableFilter = New TableFilter

 'define the master query and the field which will be used as primary key

 tableFilter.DomainQuery = "SELECT * FROM KNB_Articles"

 tableFilter.ReturnFields.Add("ID")

 'define a filter which configures the table filter grid

 Dim objPredefFilter As New PredefinedFilter()

 objPredefFilter.ID = New Guid("{41229DD9-0CC3-479f-A4BC-0B5A03EB7D90}")

 objPredefFilter.Name = "<All Articles>"

PRIMAVERA WebCentral SDK Manual

26

 'define the columns which will appear in the table filter grid

 objPredefFilter.Fields.Add("Author")

 objPredefFilter.Fields.Add("Date")

 objPredefFilter.WhereClause = ""

 objPredefFilter.FieldsOrder.Add("[Date] DESC")

 tableFilter.PredefinedFilters.Add(objPredefFilter)

 tableFilter.AllowCloning = True

 End If

 Return tableFilter

 End Function

 Implement the method like it is written above. We’ve now implemented a new table filter

which will be bound to the master grid, showing the column Title, Author and Date and

sorting all existing records descending by the column date.

Step 3.3 – Creating the Administration Detail User Control

The administration detail user control will be placed into the PRIMAVERA WebCentral

Administration component. When a user firstly accesses the administration component, the

administration detail user control will be hidden. It will only become visible if it is needed to show

an existing items detail (edit) or when the user wishes to insert a new item (insertion).

The ASCX file does not need much explanation. Appendix 8 [Page 121] will show you the

complete ASCX file content we’ll need to complete this step. Just some labels, input controls and

styles, to edit or insert an article from the KnowledgeBase. However, in the ASCX’s code you will

also find some extraordinary controls: The HTML editor as well as the image selection control.

The web based HTML editor will permit to format the KnowledgeBase articles body. This is done

through some JavaScript, which formats a plain textbox on the client side to a full-blown HTML

editor. The image selection is done using two user controls from the PRIMAVERA WebCentral

Platform: WebImageSelectionPopUpButton and WebImageSelection. The button serves to

show the image selection user control and should be placed on the right side of the textbox

which shows the relative path to the image selected. Whenever the user clicks on the image

selection button, the KnowledgeBase item details are hidden and the image selection user control

is shown.

 Add a new Web User Control, called ArticleAdminDetail.ascx to the folder Components in

the Primavera.KnowledgeBase.WebUI project.

 Change the Visual Studio 2008 designer to the source view.

 Implement the ASCX file like shown in Appendix 8 [Page 121].

The code-behind file is more interesting, as it shows how to use PRIMAVERA WebCentral

contextual information to load, edit and insert a record using the module’s business service layer.

We will now analyze the code-behind code step-by-step; you also can see the complete code-

behind in Appendix 9 [Page 125].

 Open the user control’s code behind file ArticleAdminDetail.ascx.vb

 As this user control not necessarily needs to be recognized directly by the PRIMAVERA

WebCentral Platform, we won’t need to change the classes’ base class to

Platform.WebUI.WebComponentBase, like we did before. This component embeds like

normal ASP.NET user controls in other web pages or other user controls.

PRIMAVERA WebCentral SDK Manual

27

 We need to expose two events for the user control which will host the administration details.

These events are triggered whenever the administration details user control needs to be

hidden, say, when the user confirmed the modifications or he wants to cancel the operation.

We declare these two events at the start of the classes implementation:

 'declare events to signal the parent user control or form that the user clicked

 'on the back button or the confirm button. the parent user control is responsible

 'for reacting the correct way on these events.

 Public Event BackButtonClicked()

 Public Event ArticleSaved()

 We placed some user controls in the ASCX file, which are not known to the Visual Studio IDE

(as they reside in the PRIMAVERA WebCentral installation directory). By default, the Visual

Studio IDE declares these user controls as WebControls.UserControl in the designer file,

but as we need to access some of the controls properties and methods, it’s a better way to

declare these user controls with the correct type in the code-behind file:

 'declare user controls referenced from the PRIMAVERA WebCentral Platform

 'here in the code behind file, using the exact variable name as stated in the ascx

 Protected WithEvents WebImageSelectionPopUpButton1 _

 As Primavera.Platform.WebUI.WebImageSelectionPopUpButton

 Protected WithEvents controlImageSelection _

 As Primavera.Platform.WebUI.WebImageSelection

 We also need some private variables to store the contextual information, as well as the

current edit mode (insertion or modification). These private attributes are only accessible

using the public properties which we are going to implement next.

 'private attributes, which are initialized by the parent user control using the

 'public properties this class exposes

 Private _webContext As Primavera.Platform.WebUI.WebContext

 Private _visualizationMode As VisualizationMode

 The WebContext object contains essential information about the portals current context,

such as which user is currently logged in, which organization, which template is being used

as well as the database context, which we use to access the database. The Mode variable will

be initialized by the parent form to let us now if we should insert a new record or edit an

existing. It is good practise to avoid direct access to the classes attributes. These accesses

should be realized using properties instead. We’ll now implement the two properties to

access the private members that we declared before:

 '<summary>

 ' This property allows access to vital context information, that are necessary to

 ' implement access to the system's database (such as information about user,

 ' organization, portal, etc). This property needs to be initialized from the

parent

 ' user control.

 '</summary>

 Public Property WebContext() As Primavera.Platform.WebUI.WebContext

 Get

PRIMAVERA WebCentral SDK Manual

28

 Return _webContext

 End Get

 Set(ByVal Value As Primavera.Platform.WebUI.WebContext)

 _webContext = Value

 End Set

 End Property

 '<summary>

 ' This property allows access to the edit mode; this control needs to know if we

are

 ' currently editing an existing, or inserting a new record. This property needs to

 ' be initialized from the parent user control.

 '</summary>

 Public Property Mode() As VisualizationMode

 Get

 Return _visualizationMode

 End Get

 Set(ByVal Value As VisualizationMode)

 _visualizationMode = Value

 Select Case _visualizationMode

 Case VisualizationMode.Insertion

 CreateBusinessEntity()

 Case VisualizationMode.Edition

 EditBusinessEntity()

 End Select

 ShowBusinessEntity()

 End Set

 End Property 'Mode

 Whenever the administration detail user control enters in edit mode, it will need to know the

unique identifier of the article to edit. The parent form will initialize this property when the user

clicks on the Edit button of the grid’s toolbar.

 '<summary>

 ' The parent user control needs to initialize this property whenever the user is

 ' editing an existing record. This property needs to be initialized with the

 ' primary key of the record to be edited.

 '</summary>

 Public Property ArticleId() As Guid

 Get

 Return CType(Session("ArticleId"), System.Guid)

 End Get

 Set(ByVal Value As System.Guid)

 Session("ArticleId") = Value

 End Set

 End Property

 The following property will be used to persist an object of the business entity. As a web page itself

is stateless, we will need to store it in the Session object. The Session object will be cleaned up by

PRIMAVERA WebCentral SDK Manual

29

the method ClearSessionObjects, whenever the user leaves the article detail administration

form.

 '<summary>

 ' The following property persists an business entity object of the record that is

 ' currently edited. This property is for internal use only.

 '</summary>

 Private Property BusinessEntity() As Entities.Article

 Get

 If Not Session("ArticleBEO") Is Nothing Then

 Return CType(Session("ArticleBEO"), Entities.Article)

 End If

 Return Nothing

 End Get

 Set(ByVal Value As Entities.Article)

 Session("ArticleBEO") = Value

 End Set

 End Property

 As you saw in the ASCX file, there are some calls to functions in the code-behind to initialize the

HTML editor. These functions are used to reference the textbox, which will be used as HTML editor

as well as referencing the correct JavaScript file, which can be found on the web server. These

helper function will be implemented as follows:

 '<summary>

 ' The following method will be called in the ASCX file to retrieve an HTML valid

 ' identifier to reference the textbox control used as HTML editor (see also ASCX)

 '</summary>

 Protected Function ID2Name(ByVal ID As String) As String

 Return System.Text.RegularExpressions.Regex.Replace(ID, "(?<tok>[a-zA-Z0-

9]+)_", "${tok}:")

 End Function 'ID2Name

 '<summary>

 ' The following method will be called to build a correct portal URL, for including

 ' JavaScript files for the HTML editor (see also ASCX)

 '</summary>

 Protected Function GetCurrentPortalURL(ByVal Request As HttpRequest) As String

 Dim currentPortalUrl As String = String.Format("http://{0}/{1}", _

 Request.Url.Host, Request.Url.Segments(1))

 Return currentPortalUrl.TrimEnd("/")

 End Function 'GetCurrentPortalURL

 The following method will be called whenever the user decides to confirm the current entity

settings or to cancel the current operation and go back to the administration grid view. This

method will remove the used objects which are stored in the session object.

PRIMAVERA WebCentral SDK Manual

30

 '<summary>

 ' The following method will cleanup the session object which are used by this

 ' user control. You should call this method whenever the in the session state

 ' persisted objects are no longer necessary.

 '</summary>

 Private Sub ClearSessionObjects()

 Session.Remove("ArticleId")

 Session.Remove("ArticleBEO")

 End Sub 'ClearSessionObjects

 Next we need a method that is called whenever it is necessary to initialize the user control with the

values currently stored in our business entity object. We also have to initialize the image selection

control with the relative image path.

 '<summary>

 ' The following method will be called whenever it is necessary to initialize

 ' the user control with values from the currently loaded business entity. This

 ' is basically everytime the case, when a user edits an existing record.

 '</summary>

 Private Sub ShowBusinessEntity()

 txtAutor.Text = Me.BusinessEntity.Author

 txtArticle.Text = Me.BusinessEntity.Body

 txtDate.Value = Me.BusinessEntity.Date

 txtTitle.Text = Me.BusinessEntity.Title

 txtImage.Text = Me.BusinessEntity.Image

 'update image selection control

 WebImageSelectionPopUpButton1.ImageHtml = Me.BusinessEntity.Image

 WebImageSelectionPopUpButton1.SetConfigurationParameters()

 End Sub 'ShowBusinessEntity

 The following method is called whenever the user needs to insert a new record to the

KnowledgeBase articles. It will initialize a business entity object with default values.

 '<summary>

 ' The following method will be called whenever the user wishes to create

 ' a new record. This method initializes a new business entity object.

 '</summary>

 Private Sub CreateBusinessEntity()

 'initialize new business entity

 Dim businessEntity As New Entities.Article

 businessEntity.ID = Guid.NewGuid()

 businessEntity.Author = WebContext.User.UserName

 businessEntity.Date = DateTime.Now

 businessEntity.Image = String.Empty

 businessEntity.Title = String.Empty

PRIMAVERA WebCentral SDK Manual

31

 businessEntity.Body = String.Empty

 'initialize image button

 WebImageSelectionPopUpButton1.ImageHtml = businessEntity.Image

 WebImageSelectionPopUpButton1.SetConfigurationParameters()

 Me.BusinessEntity = businessEntity

 End Sub 'CreateBusinessEntity

 Once the user clicked on the Edit button of the toolbar provided by the WebTableFilterGrid user

control, the parent will initialize the details ArticleId property and set the mode to Edition. This is

the place where the following method is called to load the business entity object with the values

from database:

 '<summary>

 ' The following method will be called to initialize the internally used business

 ' entity object for being edited. It will load the specified record from database;

 ' the record's primary key needs to be set before.

 '</summary>

 Private Sub EditBusinessEntity()

 Dim businessLayer As New Business.Articles

 Me.BusinessEntity = businessLayer.Edit(WebContext.User.EngineContext,

Me.ArticleId)

 'initialize image button

 WebImageSelectionPopUpButton1.ImageHtml = Me.BusinessEntity.Image

 WebImageSelectionPopUpButton1.SetConfigurationParameters()

 End Sub 'EditBusinessEntity

 Whenever the user clicked on the Confirm button, all modifications to the business entity need to

be written to database. We do not need to care about if we are editing or inserting a record,

because the business entity has an internal attribute that indicates if the object was loaded from

database or not.

 '<summary>

 ' The following method will be called whenever it is necessary to write all

changes

 ' down to database. This method will update the existing record, which was edited,

or

 ' inserts a new record to the database.

 '</summary>

 Private Sub UpdateBusinessEntity()

 Me.BusinessEntity.Author = txtAutor.Text

 Me.BusinessEntity.Title = txtTitle.Text

 Me.BusinessEntity.Body = txtArticle.Text

 Me.BusinessEntity.Date = txtDate.Value

 Me.BusinessEntity.Image = txtImage.Text

PRIMAVERA WebCentral SDK Manual

32

 Dim businessLayer As New Business.Articles

 businessLayer.Update(WebContext.User.EngineContext, Me.BusinessEntity)

 End Sub 'UpdateBusinessEntity

 The Page_Load event handler method will be called whenever the client requests a web

page that contains this user control – so that’s a good place to do some initialization. The

button that already handles the image selection treats the showing/ hiding of the panels, it

just needs to know a reference to the panels controls.

 '<summary>

 ' The following event handler will be called whenever the page loads; place all

 ' initialization code here.

 '</summary>

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

 Me.WebImageSelectionPopUpButton1.PanelMaster = Me.panelArticleDetails

 Me.WebImageSelectionPopUpButton1.PanelDetail = Me.panelImageSelection

 Me.WebImageSelectionPopUpButton1.WebImageSelectionControl =

Me.controlImageSelection

 If Not Me.IsPostBack Then

Me.WebImageSelectionPopUpButton1.SetConfigurationParameters()

 End Sub 'Page_Load

 The following event handler will be called whenever the user clicked on the Back button. In this

case we will need to remove temporarily used objects from the Session object and raise the event

that signals the parent form to hide the details panel and show the grid panel.

 '<summary>

 ' The following event handler will be called whenever the user clicked on the

"Back"

 ' button. No changes should be written down to database; the parent will receive

an

 ' event and should hide this details control and show the table filter grid.

 '</summary>

 Private Sub cmdBack_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnBack.Click

 RaiseEvent BackButtonClicked()

 ClearSessionObjects()

 End Sub 'cmdBack_Click

 The following event handler will be called whenever the user clicked the Confirm button. We will

need to save all modifications on the business entity to database and raise the event that signals

the parent form to hide the details panel and show the grid panel.

 '<summary>

 ' The following event handler will be called whenever the user clicked on the

"Confirm"

PRIMAVERA WebCentral SDK Manual

33

 ' button. All changes should be written down to database; ; the parent will

receive an

 ' event and should hide this details control and show the table filter grid.

 '</summary>

 Private Sub cmdSave_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnConfirm.Click

 Me.UpdateBusinessEntity()

 RaiseEvent ArticleSaved()

 ClearSessionObjects()

 End Sub 'cmdSave_Click

 Whenever the user selected an image for the article, the following event handler will be raised. We

will need to update the business entity as well as the textbox with the modified path to the

selected image.

 '<summary>

 ' The following event handler will be called whenever the user confirmed an image

 ' in the image selection control. We will need to update the business entities

 ' image property with the new value.

 '</summary>

 Private Sub WebImageSelectionPopUpButton1_ImageSelected(ByVal configuration

As Platform.WebUI.ImageConfiguration) Handles

WebImageSelectionPopUpButton1.ImageSelected

 If Me.BusinessEntity Is Nothing Then _

 Exit Sub

 Me.BusinessEntity.Image = configuration.ImageHtml

 txtImage.Text = configuration.ImageHtml

 End Sub 'WebImageSelectionPopUpButton1_ImageSelected

That’s all for the administration details user control, which supported editing and inserting new

articles for the KnowledgeBase. As already said before, this user control will be placed on the

main administration user control, which contains the list of all existing KnowledgeBase articles,

as well as a toolbar that allows to edit/insert/remove and clone records. We also could have

implemented the details user control’s code directly to the main administration user control, but

that would have been too much confusion to handle and maintain. In the next step we will

implement the main administration user control.

Step 3.4 – Creating the Administration User Control

We already defined the table filter which we would like to use for our administration data grid as

well as published our – until now – not existing component; now it’s time to get our hands dirty

and implement the administration user control. This user control will actually also encapsulate

the articles’ detail user control, and show/hide it in dependency of the current state. But let’s

start with the administration user control’s HTML file:

 Add a new Web User Control, called ArticleAdmin.ascx to the folder Components in the

Primavera.KnowledgeBase.WebUI project.

 Change the Visual Studio 2008 designer to the source view

PRIMAVERA WebCentral SDK Manual

34

 We will reuse various user controls that are provided by the PRIMAVERA WebCentral

Platform; so let’s first register the components we need (WebGridMessage and

WebGridTableFilter) in the files header, using the Register tag: Below the Control tag,

insert the following lines:

 <%@ Register TagPrefix="WebC" TagName="WebGridTableFilter"

Src="../Primavera.Platform/WebGridTableFilter.ascx" %>

 <%@ Register TagPrefix="WebC" TagName="WebGridMessage"

Src="../Primavera.Platform/WebGridMessage.ascx" %>

 <%@ Register Src="ArticleAdminDetail.ascx"

TagName="ArticleAdminDetail" TagPrefix="WebC" %>

 The next part of the ASCX file will be the panel that contains the data grid. We will

encapsulate the data grid into a panel, so that we easily can show/hide it depending on the

current edit mode.

 <!-- the following user control will be used to issue messages to the user -->

 <WebC:webgridmessage id="messageBox" runat="server"

visible="False"></WebC:webgridmessage>

 <asp:Panel ID="panelArticleMaster" Visible="True" runat=server>

 <!-- this panel will handle the grid that shows all available business entities

to

 the user. this "master" grid also implements common funcionalities like

insert

 new item, edit/clone and remove the current item. this panel will be

hidden by

 the code behind whenever the details (ArticleAdminDetail) needs to be

shown. -->

 <table id="tableArticles" runat="server" cellspacing="0" cellpadding="0"

width="100%" border="0">

 <tr>

 <td>

 <WebC:webgridtablefilter id="articleAdminMasterGrid" visible="True"

 runat="server" width="100%" height="20px" DoPagination="True"

 AllowDefaultPaging="True" AllowDefaultSorting="True"

 AllowSelectingRecordsPerPage="True"

DefaultPagingMode="NumericPages"

 DefaultPagingPosition="Top" PageSize="10" PageSizeIndex="0">

 </WebC:webgridtablefilter>

 </td>

 </tr>

 </table>

 </asp:Panel>

 Under this data grid panel, we will prepare another panel which will encapsulate the

KnowledgeBase item details.

 <asp:Panel ID="panelArticleDetails" Visible="False" runat=server>

 <!-- this panel will handle the current entities details. it is shown whenever the

 user edits the currently selected or inserts a new record. we could have done

 this also in a separate aspx file. -->

PRIMAVERA WebCentral SDK Manual

35

 <table>

 <tr>

 <td>

 <WebC:ArticleAdminDetail id="articleAdminEntityDetails" runat="server">

 </WebC:ArticleAdminDetail></td>

 </td>

 </tr>

 </table>

 </asp:Panel>

When finished, the user controls ASCX file should something look like the listing showed in

Appendix 10 [Page 131]. Please compare your code with this listing and make sure everything’s

alright before we proceed with the code-behind file. You might get a warning issued from the

Visual Studio IDE, telling you that the path in the Register tags, at the start of the file, are not

valid. That’s ok, because it already meets the correct directory structure in the production

environment.

Now let’s start with the code-behind file. The following steps will explain the sequence of changes

that we are going to make in the code-behind file. If you have doubts on how it’s done correctly,

please refer to Appendix 11 [Page 133] where you can find the complete code-behind for this

user control.

 Open the user control’s code behind file ArticleAdmin.ascx.vb

 At the top of the file, import the namespaces that we are going to use in the code.

 Imports Primavera.Platform.WebUI

 Imports Primavera.Platform.WebUI.Controls

 The administration user control will encapsulate the list of existing records, as well as show

the article details whenever the user is inserting a new or editing an existing record. The

user control needs to persist the current editing mode (Consultation will show the data grid

with existing records, Insertion and Edition will show the article detail user control).

Therefore, we will need to declare a new enumeration type, which will be used by the

administration user control, as well as the administration detail control. At the top of the file,

between the Imports and the class declaration, insert following declaration:

 Public Enum VisualizationMode

 Consultation

 Insertion

 Edition

 End Enum

 As we are implementing a new component for the PRIMAVERA WebCentral Platform we need

to change the user control’s base class:

 Partial Public Class ArticleAdmin

 Inherits Primavera.Platform.WebUI.WebComponentBase

 We placed some user controls in the ASCX file, which are not known to the Visual Studio IDE.

By default, the Visual Studio IDE declares these user controls as WebControls.UserControl

in the designer file, but as we need to access some of the controls properties and methods,

it’s a better way to declare these user controls with the correct type in the code-behind file:

 'declare user controls referenced from the PRIMAVERA WebCentral Platform

PRIMAVERA WebCentral SDK Manual

36

 'here in the code behind file, using the exact variable name as stated in the ascx

 Protected WithEvents messageBox As Primavera.Platform.WebUI.Controls.WebGridMessage

 Protected WithEvents articleAdminMasterGrid As

Primavera.Platform.WebUI.Controls.WebGridTableFilter

 Now let’s implement the property, which persists the user’s control current visualization

mode. As a user control by itself is stateless, we’ll store the current mode into the session

object. We will show/ hide the grid/ detail panel whenever the user control’s visualization

mode is changed:

 '<summary>

 ' This UserControl must handle various modes, as it joins the master and

 ' detail form. The following property will persist the current state, using the

 ' Session object. The initial state is consultation, which means, the master

 ' grid view is displayed. Whenever the user edits or inserts a new record, the

 ' master grid needs to be hidden and the details pane needs to be shown.

 '</summary>

 Private Property Mode() As VisualizationMode

 Get

 If Session("ArticleAdminMode") Is Nothing Then

 Return VisualizationMode.Consultation

 Else

 Return CType(Session("ArticleAdminMode"), VisualizationMode)

 End If

 End Get

 Set(ByVal Value As VisualizationMode)

 Select Case Value

 Case VisualizationMode.Consultation

 panelArticleMaster.Visible = True

 panelArticleDetails.Visible = False

 Case VisualizationMode.Insertion

 panelArticleMaster.Visible = False

 panelArticleDetails.Visible = True

 articleAdminEntityDetails.Mode = VisualizationMode.Insertion

 Case VisualizationMode.Edition

 panelArticleMaster.Visible = False

 panelArticleDetails.Visible = True

 articleAdminEntityDetails.Mode = VisualizationMode.Edition

 End Select

 Session("ArticleAdminMode") = Value

 End Set

 End Property 'Mode

 The following method is a helper method which will allow us to easily show a message box

style information to the user. We will reuse the WebGridMessage user control, which is

available through the PRIMAVERA WebCentral Platform.

 '<summary>

 ' The following method is used to show a message (or an error) to the user;

 ' it will show the platform's message box user control and initialize the

 ' icon/text to be shown.

 '</summary>

PRIMAVERA WebCentral SDK Manual

37

 Private Sub ShowMessage(ByVal Type As Platform.WebUI.Controls.WebGridMessageType,

ByVal Title As String, ByVal Message As String)

 messageBox.Visible = True

 messageBox.MessageType = Type

 messageBox.MessageTitle = Title

 messageBox.MessageText = Message

 messageBox.Refresh()

 End Sub 'ShowMessage

 The Page_Load event handler method will be called whenever the client requests a web

page that contains the administration user control – so that’s a good place to do some

initialization. For example, the WebGridTableFilter user control needs to know which table

filter it should use to display its data. The article detail user control needs to know contextual

information for being able to load the business entity detail data from the database. While

implementing this method, pay special attention to the TableFilterID property – this

property needs to be initialized to unique identifier as declared before in the TableFiltersIds

class.

 '<summary>

 ' The following method will be called when the page loads; it should be used

 ' to initialize the page's controls.

 '</summary>

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

 'initialize the table filter grid; we'll need to initialize this control with

module name

 'as well as table filter object (defined in the solutions Modules project),

which will be

 'used to query the information from the database.

 articleAdminMasterGrid.ModuleName = "Primavera.KnowledgeBase"

 articleAdminMasterGrid.TableFilterID = New Guid("{25662350-E994-45dd-9C75-

340AA517357D}")

 'initialize the details user control's web context property

 articleAdminEntityDetails.WebContext = Me.WebContext

 'if not postback: initialize the forms mode to its default (consultation)

 If Not Me.IsPostBack Then

 Mode = VisualizationMode.Consultation

 articleAdminMasterGrid.RefreshDataSource()

 End If

 End Sub 'Page_Load

 The WebGridTableFilter user control, by default, presents a toolbar which allows the user

to easily insert, edit, remove and clone records. We now need to implement the code for

these event handlers. Let’s start with the event handler which will be called whenever the

user decided to create a new record:

 '<summary>

PRIMAVERA WebCentral SDK Manual

38

 ' The following method will be called whenever the user clicked on the "New"

button

 ' of the table filter grid. The method will simply change the mode to insertion,

which

 ' will cause the table filter grid to be hidden and the details view to be shown.

 '</summary>

 Private Sub articleAdminMasterGrid_CreateRecord(ByVal Sender As Object)

Handles articleAdminMasterGrid.CreateRecord

 Me.Mode = VisualizationMode.Insertion

 End Sub 'articleAdminMasterGrid_CreateRecord

 Yes, that’s all. We just set the current mode to Insertion. The property implementation will

hide the administration grid and initialize the articles’ details user control to insert a new

record. The event handler, which is called to edit an existing record, is slightly more

complex. It needs to initialize the article details ArticleId property, so it knows which article

should be edited.

 '<summary>

 ' The following method will be called whenever the user clicked on the "Edit"

button

 ' of the table filter grid. The method will initialize the details view unique id

 ' property and set the edition mode, which will cause the table filter to be

hidden

 ' and the details view to be shown.

 '</summary>

 Private Sub articleAdminMasterGrid_EditRecord(ByVal Sender As Object,

ByVal selectedRowIdentifier As WebGridTableFilter.TableFilterKeyValueCollection,

ByRef cancel As Boolean) Handles articleAdminMasterGrid.EditRecord

 Try

 articleAdminEntityDetails.ArticleId = selectedRowIdentifier("ID")

 Mode = VisualizationMode.Edition

 Catch ex As System.Security.SecurityException

 Mode = VisualizationMode.Consultation

 ShowMessage(WebGridMessageType.Warning, String.Empty, ex.Message)

 Catch ex As Exception

 Mode = VisualizationMode.Consultation

 ShowMessage(WebGridMessageType.Error, String.Empty, ex.Message)

 End Try

 End Sub 'articleAdminMasterGrid_EditRecord

 The event handler for the clone operation won’t need to change the visualization mode. It

simply clones the currently selected record by using the module’s business service layer,

before it rebinds the grid with the data source.

 '<summary>

 ' The following method will be called whenever the user clicked on the "Clone"

button

PRIMAVERA WebCentral SDK Manual

39

 ' of the table filter grid. The code here demonstrates how to clone a existing

record.

 '</summary>

 Private Sub articleAdminMasterGrid_CloneRecord(ByVal Sender As Object,

ByVal selectedRowIdentifier As WebGridTableFilter.TableFilterKeyValueCollection,

ByRef cancel As Boolean) Handles articleAdminMasterGrid.CloneRecord

 Try

 Dim articleId As System.Guid = CType(selectedRowIdentifier("ID"),

System.Guid)

 Dim businessLayer As New Business.Articles

 businessLayer.Clone(WebContext.User.EngineContext, articleId)

 articleAdminMasterGrid.RefreshDataSource()

 Catch ex As System.Security.SecurityException

 ShowMessage(WebGridMessageType.Warning, String.Empty, ex.Message)

 Catch ex As Exception

 ShowMessage(WebGridMessageType.Error, String.Empty, ex.Message)

 End Try

 End Sub 'articleAdminMasterGrid_CloneRecord

 The WebGridTableFilter user control also exposes a toolbar button which should refresh

the data shown in the grid - the event handler’s implementation simply rebinds the grid to

the data source:

 '<summary>

 ' The following method will be called whenever the user clicked on the "Refresh"

button.

 ' It will simply refresh the master grid and bind it to the data source.

 '</summary>

 Private Sub articleAdminMasterGrid_Refresh(ByRef Cancel As Boolean)

Handles articleAdminMasterGrid.Refresh

 articleAdminMasterGrid.RefreshDataSource()

 End Sub 'articleAdminMasterGrid_Refresh

 We also need to respond to events that are triggered by the article details user control. If the

user clicked on the Save or the Back button, the administration user control needs to

update the visualization mode and hide the article details control and update the records

shown in the WebGridTableFilter.

 '<summary>

 ' The following method will be called whenever the user clicked on the "Confirm"

button

 ' in the details view. This method sets the mode to consultation, which will cause

the

PRIMAVERA WebCentral SDK Manual

40

 ' table filter grid to be shown and the details control to be hidden.

 '</summary>

 Private Sub articleAdminEntityDetails_ArticleSaved()

Handles articleAdminEntityDetails.ArticleSaved

 Mode = VisualizationMode.Consultation

 articleAdminMasterGrid.RefreshDataSource()

 End Sub 'articleAdminEntityDetails_ArticleSaved

 '<summary>

 ' The following method will be called whenever the user clicked on the "Back"

button in

 ' the details view. This method simply sets the mode to consultation, which will

cause the

 ' table filter grid to be shown and the details control to be hidden.

 '</summary>

 Private Sub articleAdminEntityDetails_BackButtonClicked()

Handles articleAdminEntityDetails.BackButtonClicked

 Mode = VisualizationMode.Consultation

 End Sub 'articleAdminEntityDetails_BackButtonClicked

At this point, we should have done all modifications to support the administration of

KnowledgeBase articles. We’ve got the grid, which will show us all existing articles and provides

us with shortcuts to insert, edit, delete and clone KnowledgeBase articles. We implemented the

article details view, which allows us to insert new –and edit existing KnowledgeBase articles. The

solution should now be ready to compile without any errors. If you encounter an error during the

compile process, please refer to the code implementation in the appendixes 8 to 11.

Step 3.5 – Testing the Article Administration Component

 Use the Visual Studio 2008 IDE to compile the solution in DEBUG mode.

 Close the Visual Studio 2008 IDE and run the eModuleDeploy utility, which you will find in

the Tools folder of the PRIMAVERA WebCentral SDK.

 Indicate the complete filename of our module’s solution and start the deployment process.

 After the deployment process has completed, launch the Site Administrator Application and

navigate to the Portal Designer. Double-click on the Intranet portal. Create a new page

Article Administration in the already existing folder KnowledgeBase.

 Right-click the page content panel and choose to place a new component on the page. In the

component selection dialog, change the component type to Administration and select the

KnowledgeBase module in the left panel.

PRIMAVERA WebCentral SDK Manual

41

 The Article Administration component should now appear in the list of available

components. Select this component and click on Confirm.

 Check in the new page and publish the new portal revision.

 Open a new instance of your browser and navigate to the recently added page. You should

see the new article administration component in action. The KnowledgeBase Article Grid

should appear like in the image below.

 Try creating a new KnowledgeBase article and check editing the newly created article. The

KnowledgeBase Article Detail component should be shown:

PRIMAVERA WebCentral SDK Manual

42

Step 4 – Component Customization
Imagine, whenever the user places the KnowledgeBase article list component on a page, you’d

like to give the possibility to choose if the image should be shown in this list, or not – if the name

of the author should appear, or not. Currently there’s no way to configure the visualization

attributes for any component that we implemented until now. This chapter will explain how to

provide configuration properties to a component. In this chapter we’ll implement a windows

forms based configuration dialog, which will allow us to customize the article list component

appearance.

Step 4.1 – Creating an entity to persist the configuration

First of all, we’ll need a place to store the configuration information. The PRIMAVERA WebCentral

Platform provides a concept named Property Bags, which allows us to store this kind of

information as serialized object using XML. There’s no need to create another SQL Server Table,

as these Property Bags are stored in a common table in the WebCentral Database. We will need

an entity which allows us to access this information, however.

 Open the Primavera.KnowledgeBase.Entities project and create a new folder named

PropertyBags. With this folder selected, create a new class named ArticleList.

 Implement this class as shown in appendix 12 [page 138].

As you can see, there’s nothing special about this classes implementation – just an entity class

having private attributes and public properties to access them. The only thing to remember is to

inherit from the base class PropertyBagBase and to give it a unique GUID value in the

SerializationEntity attribute:

PRIMAVERA WebCentral SDK Manual

43

 <Serializable(), SerializationEntity("{A461C193-98FB-4a52-94AF-7EB6574B470E}",

"1.0")> _

 Public Class ArticleList

 Inherits PropertyBagBase

Step 4.2 – Configuration support in the business service layer

In this step we’ll do the necessary alterations in the business service layer to permit the article

list properties to be serialized to database.

 Open the Primavera.KnowledgeBas.Business project and create a new folder named

PropertyBags. With this folder selected, create a new class named ArticleList.

 This new class is responsible for reading and updating the article list components properties.

Implement the class like shown below.

 Imports Primavera.KnowledgeBase.Entities

 Imports Primavera.Platform.Engine.Entities

 Imports Primavera.Platform.Engine.Business

 Namespace PropertyBags

 <SerializationService(GetType(Entities.PropertyBags.ArticleList))> _

 Public Class ArticleList

 Inherits PropertyBagServiceBase

 Public Function Edit(ByVal Context As EngineContext, ByVal ID As

System.Guid) _

As Entities.PropertyBags.ArticleList

 Return BaseEdit(Context, ID)

 End Function

 Public Sub Update(ByVal Context As EngineContext, ByVal PropertyBag As

Entities.PropertyBags.ArticleList)

 BaseUpdate(Context, PropertyBag)

 End Sub

 End Class

 End Namespace

 Having the folder PropertyBags selected, create a new class named Proxy. This class will

provide us with a central location to access property bags through its static properties.

 Namespace PropertyBags

 Public Class Proxy

 Public Shared ReadOnly Property ArticleList() As ArticleList

 Get

 Return New ArticleList

 End Get

 End Property

 End Class

PRIMAVERA WebCentral SDK Manual

44

 End Namespace

Step 4.3 – Define the Interfaces for Remoting

The remoting layer – implemented through the assemblies IRemoting and Remoting – is

necessary for the WinUI being able to access the business service layer. The remoting layer will

marshal calls from the windows forms based client UI, which runs hosted by the Site

Administration utility or your browser, to the business service layer which executes on the web

server. Each call made from the client UI results in a HTTP request on the web server, which

dispatches the request to the business service layer – so you should be very careful when it

comes to remote calls as it greatly can influence your applications performance.

 Open the project Primavera.KnowledgeBase.IRemoting and create a new folder named

PropertyBags. Having this folder selected, create a new class interface named IArticles.

 This interface will be used to marshal calls to access the article list components properties

and only contains the signatures of the procedures, which are later implemented in the

remoting project. Implement this interface class like shown below:

 Imports Primavera.Platform.Engine.IRemoting

 Namespace PropertyBags

 Public Interface IArticleList

 Function Edit(ByVal RemoteContext As RemoteEngineContext, _

ByVal ID As System.Guid) As Entities.PropertyBags.ArticleList

 Sub Update(ByVal RemoteContext As RemoteEngineContext, _

ByVal PropertyBag As Entities.PropertyBags.ArticleList)

 Function Exists(ByVal RemoteContext As RemoteEngineContext, _

ByVal ID As System.Guid) As System.Boolean

 Sub Remove(ByVal RemoteContext As RemoteEngineContext, ByVal ID As

System.Guid)

 Function Clone(ByVal RemoteContext As RemoteEngineContext, _

ByVal ID As System.Guid) As System.Guid

End Interface

 End Namespace

 In the PropertyBag folder, create a new class named IProxy, which will define the

interface for the property bags proxy class. Like already implemented in the business service

layer, the proxy class will provide a simple way to access all property bags a module

exposes.

 Namespace PropertyBags

 Public Interface IProxy

 ReadOnly Property ArticleList() As IArticleList

 End Interface

 End Namespace

 In the project’s root folder, create a new class named IProxy, which will define the interface

for all remoting interfaces that the module supports. Currently we only use remoting for

property bags, but we also could implement other windows based user interfaces. This proxy

PRIMAVERA WebCentral SDK Manual

45

class defines the global interface for all remoting classes implemented by the module.

Implement this class like shown below.

 Public Interface IProxy

 ReadOnly Property PropertyBags() As PropertyBags.IProxy

 End Interface

Step 4.4 – Mapping the Remoting to the Business Layer

As already referred previously, the remoting layer channels calls from the client to the web

server using NET remoting. To avoid coding the same functionality twice, the remoting layer

simply maps calls to the Business Service Layer.

 Open the project Primavera.KnowledgeBase.Remoting and create a new folder named

PropertyBags. Insert a new class ArticleList to that new folder.

 Implement the new class like shown in appendix 13 [page 140]

If you take a quick look at the code you’ll see that the class ArticleList does inherit from the

base class RemoteServiceBase, which is provided by the PRIMAVERA WebCentral Platform, and

implements the interface contract IArticleList, which we previously defined. You also can see

how each method of this class instantiates an object of the business layer and calls the

appropriate method.

To easen up calls to the remoting layer, we also implement a proxy class, which will provide us

an easy way to access the property bag from the windows form.

 Create a new class named Proxy in the PropertyBag folder of the project

Primavera.KnowledgeBase.Remoting.

 Implement the new proxy class like shown below.

 Namespace PropertyBags

 Public Class Proxy

 Inherits MarshalByRefObject

 Implements IRemoting.PropertyBags.IProxy

 Public ReadOnly Property ArticleList() As

IRemoting.PropertyBags.IArticleList _

 Implements IRemoting.PropertyBags.IProxy.ArticleList

 Get

 Return New ArticleList

 End Get

 End Property

 End Class

 End Namespace

 Now we still need to implement the Proxy interface at module level. In the project’s root

folder, create a new class named Proxy and implement it like shown below.

 Public Class Proxy

 Inherits Primavera.Platform.Engine.Remoting.RemoteProxyBase

PRIMAVERA WebCentral SDK Manual

46

 Implements Primavera.KnowledgeBase.IRemoting.IProxy

 Public ReadOnly Property PropertyBags() As IRemoting.PropertyBags.IProxy _

 Implements IRemoting.IProxy.PropertyBags

 Get

 Return New Remoting.PropertyBags.Proxy

 End Get

 End Property

 End Class

Step 4.5 – Creating the Configuration Dialog

Now that we have implemented all necessary code for persisting the article list’s configuration

entity, we can start creating the configuration dialog in the WinUI project.

 Open the project Primavera.KnowledgeBase.WinUI and add a new reference to the

assembly Primavera.Platform.WinUI.dll, which is located in the installation directory of

the PRIMAVERA WebCentral SDK.

 In the WinUI project, create a new folder PropertyBags and insert a new Windows Form

named ArticleList.

Now we should have an empty windows forms dialog where we will need to add some controls to

the dialog, so that it looks more or less like the following screenshot:

The following table shows all controls that you should place from the Visual Studio IDE toolbox to
the windows forms dialog:

Control Name Caption

Button cmdConfirm Confirm

Button cmdCancel Cancel

TabControl tabParameters Parameters

GroupBox GroupBox1

GroupBox GroupBox2

GroupBox GroupBox3

PRIMAVERA WebCentral SDK Manual

47

Label lblArticleCount Number of Articles to show:

NumericUpDown txtArticleCount

Label lblArticleSort Sort Article List by:

ComboBox cmbArticleSort

CheckBox chkShowImage Show Images in the Article List

CheckBox chkShowSummary Show Summary in the Article List

CheckBox chkShowAuthor Show Author in the Artcle List

Label lblArticleDetailLink Hyperlink to Article Detail:

TextBox txtArticleDetailLink

Button cmdBrowseHyperLink …

Place all these controls on the ArticleList Windows Forms dialog and format them, so that the

dialog looks more or less like in the above screenshot.

 After all controls have been placed on the dialog, it is time to take a look at the code. The

first thing to do is to import the necessary namespaces as well as to change the base class.

Open the code behind file and declare the following namespaces at the beginning of the file.

 Imports Primavera.Platform.Engine.IRemoting

 Imports Primavera.KnowledgeBase.Entities

 Imports Primavera.KnowledgeBase.IRemoting

 Next we will need to change the dialogs base class. This

is done in file named ArticleList.Designer.vb which is

normally hidden. You will need to click on the Show All

toolbar button in the Solution Explorer to make it visible.

The ArticleList.Designer.vb file is displayed as child of

the ArticleList.vb file and contains all designer relevant

code. Please change the class declarations base class so

it matches the following code segment:

<Global.Microsoft.VisualBasic.CompilerServices.Designer

Generated()> _

 Partial Class ArticleList

 Inherits Primavera.Platform.WinUI.FormBase

 After changing the dialogs base class to Primavera.Platform.WinUI.FormBase, save and

close the ArticleList.Designer.vb file as we won’t need it anymore. In the ArticleList.vb

file, add the following private attribute declaration into the ArticleList class.

 '<summary>

 ' The following private attribute will store the article lists current

 ' configuration settings.

 '</summary>

 Private articleListPropertyBag As Entities.PropertyBags.ArticleList

 Private componentLink As Platform.WinUI.ComponentLinkDialogOutput

PRIMAVERA WebCentral SDK Manual

48

 We also need a custom constructor method, which will receive a context for object

initialization. This context variable, among other, contains information about the current user

and the current portal. Implement the new constructor like this:

 '<summary>

 ' custom c'tor

 '</summary>

 Public Sub New(ByVal WinContext As WinContext)

 MyBase.New(WinContext)

 InitializeComponent()

 End Sub 'New

 The dialog will be invoked whenever the user places a new ArticleList component on a page,

or when the user wants to change the existing components properties. We need to provide

two methods that will be called whenever the components properties need to be shown.

 '<summary>

 ' Call the following method to configure the properties for a new

 ' component.

 '</summary>

 Public Function INew() As Guid

 InitializeForm()

 NewPropertyBag()

 ShowPropertyBag()

 If Me.ShowDialog() = DialogResult.OK Then

 Return articleListPropertyBag.ID

 Else

 Return Nothing

 End If

 End Function 'INew

 '<summary>

 ' Call the following method to configure the properties for an already

 ' existing component.

 '</summary>

 Public Sub IEdit(ByVal PropertyBagID As Guid)

 InitializeForm()

 EditPropertyBag(PropertyBagID)

 ShowPropertyBag()

 Me.ShowDialog()

 End Sub 'IEdit

 The following method will initialize a new property bag instance for the ArticleList component

with default values. It will be called whenever the user places a new ArticleList component on

a page.

 '<summary>

 ' The following method is called to initialize a new property bag

 ' entity, and is called whenever the user places a new component

 ' on a page.

 '</summary>

PRIMAVERA WebCentral SDK Manual

49

 Private Sub NewPropertyBag()

 articleListPropertyBag = New Entities.PropertyBags.ArticleList

 With articleListPropertyBag

 .ID = Guid.NewGuid

 .IncludeAuthor = True

 .IncludeImage = True

 .IncludeSummary = True

 .NumArticles = 5

 .Order = Entities.PropertyBags.ArticleListOrder.OrderByDate

 .DetailPageID = Guid.Empty

 End With

 End Sub

 The next two methods simply push data from the property bag object to the dialog’s user

interface and vice versa. These are two standard methods to synchronize the user interface

and the proper bags object – nothing special about it. The only eye catcher here is the

ComponentLinkEdit object. This is a dialog provided by the PRIMAVERA WebCentral

Platform, which allows the user to easily select an existing page from any portal, and returns

its full URL and unique page identifier. You can reuse this dialog wherever you think it’s

necessary.

 '<summary>

 ' The following method will be called to initialize the dialog's

 ' user interface controls with the property bag's values.

 '</summary>

 Private Sub ShowPropertyBag()

 With articleListPropertyBag

 txtArticleCount.Value = .NumArticles

 cmbArticleSort.SelectedIndex = .Order

 chkShowAuthor.Checked = .IncludeAuthor

 chkShowImage.Checked = .IncludeImage

 chkShowSummary.Checked = .IncludeSummary

 componentLink = Platform.WinUI.Dialogs.ComponentLinkEdit(WinContext,

.DetailPageID)

 If Not componentLink Is Nothing Then

 txtArticleDetailLink.Text = componentLink.PageName

 Else

 txtArticleDetailLink.Text = "<Default>"

 End If

 End With

 End Sub

 '<summary>

 ' The following method will be called to read the values in the

 ' dialog's user interface to to property bag object.

 '</summary>

 Private Sub ReadPropertyBag()

 With articleListPropertyBag

 .NumArticles = txtArticleCount.Value

 .Order = cmbArticleSort.SelectedIndex

PRIMAVERA WebCentral SDK Manual

50

 .IncludeAuthor = chkShowAuthor.Checked

 .IncludeImage = chkShowImage.Checked

 .IncludeSummary = chkShowSummary.Checked

 .DetailPageID = componentLink.PageID

 End With

 End Sub

 Of cause we need to synchronize the property bag object attributes with the WebCentral

Database. The following methods will take care of reading and writing the property bags

configuration from/to the WebCentral Database, using the remoting layer, which we

implemented before.

 '<summary>

 ' The following method will be called to read an existing property

 ' bag from the WebCentral database.

 '</summary>

 Private Sub EditPropertyBag(ByVal PropertyBagID As Guid)

 Dim Context As Platform.Engine.IRemoting.RemoteEngineContext =

MyBase.CreateRemoteEngineContext()

 Dim Proxy As IRemoting.IProxy = Me.CreateRemoteProxy(GetType(IRemoting.IProxy))

 articleListPropertyBag = Proxy.PropertyBags.ArticleList.Edit(Context,

PropertyBagID)

 End Sub

 '<summary>

 ' The following method will be called to store the property bags

 ' attributes to the WebCentral database.

 '</summary>

 Private Sub UpdatePropertyBag()

 Dim Context As Platform.Engine.IRemoting.RemoteEngineContext =

MyBase.CreateRemoteEngineContext()

 Dim Proxy As IRemoting.IProxy = Me.CreateRemoteProxy(GetType(IRemoting.IProxy))

 Proxy.PropertyBags.ArticleList.Update(Context, articleListPropertyBag)

 End Sub

 We still did not implement the dialog control’s initialization yet. The initialization method

simply initializes the sorting order combo box items and sets the minimum and maximum

number of records to show in the article list.

 '<summary>

 ' The following method initializes the dialogs controls

 '</summary>

 Private Sub InitializeForm()

 cmbArticleSort.Items.Clear()

 cmbArticleSort.Items.Add("Article Date")

 cmbArticleSort.Items.Add("Article Author")

 cmbArticleSort.Items.Add("Article Title")

 cmbArticleSort.SelectedIndex = 0

 txtArticleCount.Maximum = 15

 txtArticleCount.Minimum = 1

PRIMAVERA WebCentral SDK Manual

51

 End Sub

 But what should happen when the user clicks on the browse button to select a page for the

article details? By default, WebCentral will use an empty page and automatically places there

the article detail component in it, which shows the selected article details. Now, it is possible

to create a custom page, just like any other page with other components, which will be

called whenever the user clicks on an article in the list. The only requisite is that the page

contains – among the other components – the ArticleDetail component. The following code

will implement the page selection for the article detail page. Please make sure that the

ComponentID property is equal to the component id for the ArticleDetail component, as

specified in the file ComponentsIds in the Primavera.KnowledgeBase.Modules project.

 '<summary>

 ' The following method is called whenever the user clicked the Browse

 ' button, to select a page that contains the ArticleDetail component.

 '</summary>

 Private Sub btnLinkDetalhe_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) _

Handles cmdBrowseHyperlink.Click

 Dim dlgInput As New Platform.WinUI.ComponentLinkDialogInput()

 dlgInput.ComponentID = New Guid("{B6B669F2-35B2-43a1-A03D-7325EEB2B082}")

 dlgInput.PortalID = WinContext.Portal.PortalID

 dlgInput.PageID = articleListPropertyBag.DetailPageID

 Dim dlgOutput As Platform.WinUI.ComponentLinkDialogOutput = _

Primavera.Platform.WinUI.Dialogs.ComponentLinkSelect(WinContext, dlgInput)

 If Not dlgOutput Is Nothing Then

 articleListPropertyBag.DetailPageID = dlgOutput.PageID

 ShowPropertyBag()

 End If

 End Sub

 The only thing that’s missing now, are the event handler methods for the Confirm –and

Cancel buttons.

 '<summary>

 ' The following method is called whenever the user clicked the Confirm

 ' button. It will shift the configuration data from the user interface

 ' to the property bag object and store the changes in the Enterprise

 ' Portals database.

 '</summary>

 Private Sub btnConfirm_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) _

Handles cmdConfirm.Click

 ReadPropertyBag()

 UpdatePropertyBag()

 Me.DialogResult = DialogResult.OK

 End Sub

 '<summary>

 ' The following method is called whenever the user clicked the Cancel

PRIMAVERA WebCentral SDK Manual

52

 ' button. The user interface closes and no changes are done.

 '</summary>

 Private Sub btnCancel_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) _

Handles cmdCancel.Click

 Me.DialogResult = DialogResult.Cancel

 End Sub

After all these steps, the ArticleList dialog code behind file should somewhat look like stated in

Appendix 14 [Page 142]. At this stage you can compile your project and see if there are any

warnings or errors. If so, please verify the erroneous piece of code and compare it with the

listing in Appendix 14.

Step 4.6 – Invoking the Configuration Dialog

All that is missing now is invoking the configuration dialog at the time the user places a new

ArticleList component to a page, or whenever the user wishes to edit an existing components

configuration. If you remember, the Components class in the project Modules provides two

methods NewPropertyPage and EditPropertyPage. These two methods are called whenever

it’s necessary to show the configuration dialog. Change these two methods like shown below.

 Public Function NewPropertyPage(ByVal WinComponentContext As WinComponentContext)

As System.Guid _

Implements IComponents.NewPropertyPage

 If

WinComponentContext.ComponentID.Equals(ComponentsIDs.KnowledgeBaseArticleList) Then

 Dim dialog As New KnowledgeBase.WinUI.ArticleList(WinComponentContext)

 Return dialog.INew()

 Else

 Return Guid.NewGuid

 End If

 End Function

 Public Sub EditPropertyPage(ByVal WinComponentContext As WinComponentContext) _

Implements IComponents.EditPropertyPage

 If

WinComponentContext.ComponentID.Equals(ComponentsIDs.KnowledgeBaseArticleList) Then

 Dim dialog As New KnowledgeBase.WinUI.ArticleList(WinComponentContext)

 dialog.IEdit(WinComponentContext.PropertyBagID)

 End If

 End Sub

Step 4.7 – Applying the Configuration Settings

Once we implemented the possibility to define the configuration settings for the article list

component, we’ll also have to apply these configuration settings. Naturally this is done in the

WebUI project, in the article list web user control.

 Open the project Primavera.KnowledgeBase.WebUI and open the code-behind file

ArticleList.ascx.vb

PRIMAVERA WebCentral SDK Manual

53

 Add a new private member variable propertyBag to the class, which will store the

configuration settings for the component.

 Private propertyBag As Entities.PropertyBags.ArticleList

 In the event handler Page_Load, insert a single line to load the configuration settings for

the component.

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 propertyBag =

ComponentContext.PropertyBag(GetType(Entities.PropertyBags.ArticleList))

 LoadArticles()

 End Sub

 Add a new function named GetOrderByField, which will return the name of the field, which

should be used for sorting the grid’s records.

 Private Function GetOrderByField() As String

 Select Case PropertyBag.Order

 Case Entities.PropertyBags.ArticleListOrder.OrderByAuthor

 Return "[author]"

 Case Entities.PropertyBags.ArticleListOrder.OrderByDate

 Return "[date]"

 Case Entities.PropertyBags.ArticleListOrder.OrderByTitle

 Return "[title]"

 Case Else

 Return "[date]"

 End Select

 End Function

 Add a new function named BuildQuery, which will return a SQL query based on the current

component configuration.

 Private Function BuildQuery() As String

 Dim strSql As String = "SELECT TOP $1 * FROM KNB_Articles ORDER BY $2"

 Return Primavera.Platform.Engine.Business.SqlUtils.FormatSql(strSql, _

 propertyBag.NumArticles, GetOrderByField())

 End Function

 In the already existing method LoadArticles, replace the static SQL query with a call to the

BuildQuery method.

 Private Sub LoadArticles()

 Dim strSql As String = BuildQuery()

 Dim tblArtigos As DataTable = Primavera.Platform.Engine.Business.List.List(_

WebContext.User.EngineContext, strSql)

 lstArtigos.DataSource = tblArtigos

PRIMAVERA WebCentral SDK Manual

54

 lstArtigos.DataBind()

 End Sub

 We’ll need to build a correct URL whenever the user specified a specific page to access the

articles details. Modify the method GetDetailPageUrl so it matches following code (but

make sure that the article detail guid matches the one you specified in the

ComponentsIds.vb file).

 Public Function GetDetailPageUrl(ByVal articleId As Guid) As String

 Dim guidCompArticleDetail As Guid = New Guid("B6B669F2-35B2-43a1-A03D-

7325EEB2B082")

 If PropertyBag.DetailPageId.Equals(Guid.Empty) Then

 Return String.Format("ComponentRender.aspx?ComponentID={0}&ArticleID={1}",

_

 guidCompArticleDetail, articleId)

 Else

 Return String.Format("PortalRender.aspx?PageID={0}&ArticleID={1}", _

 PropertyBag.DetailPageId.ToString(), articleId)

 End If

 End Function

Step 4.8 – Testing the Configuration Dialog

 Use the Visual Studio 2008 IDE to compile the solution in DEBUG mode.

 Close the Visual Studio 2008 IDE and run the eModuleDeploy utility, which you will find in

the Tools folder of the PRIMAVERA WebCentral SDK.

 Indicate the complete filename of our module’s solution and start the deployment process.

 After the deployment process has completed, launch the Site Administrator Application and

navigate to the Portal Designer. Double-click on the Intranet portal.

 The portal should already have a folder Knowledge Base. Place a new page inside that

folder and name it Article Detail. Place an article detail component on this page. This page

will be our customized article detail page.

PRIMAVERA WebCentral SDK Manual

55

 Select the page Knowledge Base for editing. This page already should have an Article List

component. We will need to remove this component from the page, as it does not have a

configuration associated yet. Right-click the component and choose to remove the

component.

 Place a new Article List component on the page. After confirming, it now should now open

the configuration dialog for the component. Try changing the maximum number of articles to

show in the list and/or changing the sort order. Try to specify the previously created page as

new article detail page.

 The preview window should immediately reflect the changes made to the components

configuration.

Step 5 – Component Security
One of the most important marks of PRIMAVERA WebCentral is its support for multi-level based

security – the possibility to define permissions for each component, on a community,

organization and user group level. In this chapter, we will explain how to integrate our

customized component with the WebCentral’s security system.

PRIMAVERA WebCentral SDK Manual

56

Step 5.1 – Support for the Component Security

The security support can be activated/ deactivated for each component. This option can be

modified in the Components class in the project Primavera.KnowledgeBase.Modules.

 To enable the security support for the Article Administration component, open up the module

Primavera.KnowledgeBase.Modules and edit the file Components.vb

 Locate the method Edit and the line in which the property ComponentSecurity is set to

False for the Article Administration component. The fact that this property is set to False

means that the component is always shown to any user, without any security validation.

 Change this value assignment so the property ComponentSecurity is set to True.

 ElseIf ComponentID.Equals(ComponentsIDs.KnowledgeBaseArticleAdmin) Then

 objComp.Name = "Article Administration"

 objComp.Description = "Component for Article Administration"

 objComp.ComponentClass = "ArticleAdmin"

 objComp.RequiresEnterprise = False

 objComp.IconIndex = 0

 objComp.BackgroundOpaque = True

 objComp.AllowsFrame = True

 objComp.ComponentSecurity = True

 End If

 To enable security support for the KnowledgeBase module we will need to build the

permission tree. Still in the project Primavera.KnowledgeBase.Modules, open the class

Security and locate the method GetePrimaveraPermissionTree and implement it like

shown below.

 Dim objPermTree As New SecurityPermissionTree

 If PermissionTreeType = PermissionTreeType.Functional Then

 objPermTree.Add("ArticleAdmin", "Knowledge Base Article Administration", _

PRIMAVERA WebCentral SDK Manual

57

 ComponentsIDs.KnowledgeBaseArticleAdmin)

 ElseIf PermissionTreeType = PermissionTreeType.Data Then

 End If

 Return objPermTree

Step 5.2 – Testing the Component Security

 Use the Visual Studio 2008 IDE to compile the solution in DEBUG mode.

 Close the Visual Studio 2008 IDE and run the eModuleDeploy utility, which you will find in

the SDK folder of the PRIMAVERA WebCentral.

 Indicate the complete filename of our module’s solution and start the deployment process.

 After the deployment process has completed, launch the Site Administrator Application and

navigate to the Portal Designer. Double-click on the Intranet portal.

 In the Portal Designer, make sure that you check-in all pages that are listed in the

Knowledge Base folder. Publish the portal so that all modifications get online.

 Close the Portal Designer and navigate Security | Communities, which allows you to define

the permissions for the community level. Double-click the community Minha Comunidade,

select the security tab and add permission to access the KnowledgeBase Module.

 Confirm all changes and navigate to Security | Organizations, and add permissions to

access the KnowledgeBase Module for the organization Minha Organização.

 Confirm all changes and navigate to Security | Grupos Internos and add permissions to

access the KnowledgeBase Module for the usergroup DID.

 Try accessing the Article List Administration component using the portal Intranet and using

the user joao.fonseca, which is member of the DID user group. The user has full access to

the administration component.

 Now logoff and login using the user ana.casaco. Navigate to the Article List Administration

component and you’ll see that ana, which belongs to the group DRH, does not have sufficient

permissions to see this component.

PRIMAVERA WebCentral SDK Manual

58

Step 6 – Supporting Multiple Languages
This exercise will explain how to implement multi language support to your components. We are

going to prepare our KnowledgeBase project so it can accept and visualize the KnowledgeBase

articles in various languages.

Step 6.1 – Preparing the business entities for localization

Currently, our Article business entity encapsulates all necessary attributes for a KnowledgeBase

article in one single class. Supporting multiple languages means that we need to split these

attributes in language dependent and independent attributes. There will be a master/detail

relation, as there can be multiple language dependent records (details) for one single article

(master). We’ll need to remove the language dependent attributes from the master class Article

and introduce a new (detail) class, named ArticleCulture, which holds the language dependent

attributes (Article Title, Summary and Body).

 Create a new class named ArticleCulture – this class will hold all language dependent

information and a reference to the master article (properties ArticleId, CultureId, Title,

Summary and Body). See appendix 15 [page 146] for the complete code implementation.

 Create a new collection class ArticleCultures – this class will hold all available translations

for a specific KnowledgeBase article. See appendix 16 [page 148] for the complete code

implementation.

 In the project PrimaveraKnowledgeBase.Entities, open the class Article and remove the

properties Title, Summary and Body.

 Still in the class Article, create a new private member attribute named m_articleCultures,

as well as its public property accessors, from type ArticleCultures. This variable will store

all article translations.

 Private m_articleCultures As New ArticleCultures

 <BusinessEntityDetailAttribute()> _

PRIMAVERA WebCentral SDK Manual

59

 Public Property ArticleCultures() As ArticleCultures

 Get

 Return m_articleCultures

 End Get

 Set(ByVal Value As ArticleCultures)

 m_articleCultures = Value

 End Set

 End Property

Step 6.2 – Changes in the Administration Component

We’ll need to support the creation of articles in various languages; therefore we’ll need to do

some minor modifications to our KnowledgeBase article administration component. We’ll simply

provide the user a way to select a culture using an auto post back drop down list to the article

details. Each time the user selects a new culture, the language dependent controls are

respectively updated.

 Open the project Primavera.KnowledgeBase.WebUI and open the ArticleAdminDetail.ascx

file for the article administration component.

 At the start of the HTML table that is used for data input, insert a new row which contains a

label and a drop down, which will be filled with the available languages.

 (omitted)

 <table>

 <tr>

 <!-- Culture Selection Box -->

 <td class="width_s alignRight">Culture</td>

 <td class="width_l">

 <asp:DropDownList ID="cultureSelection"

 runat="server" CssClass="data_input width_xl" AutoPostBack="True">

 </asp:DropDownList></td>

 </tr>

 <tr>

 <!-- Articles Publishing Date (Infragistics DateTime Picker) -->

 <td class="width_s alignRight">Date</td>

 <td class="width_s">

 <WebC:webdatechooser id="txtDate" runat="server"></WebC:webdatechooser>

 </td>

 </tr>

 (omitted)

 Switch to the code behind file and declare a new private member variable, which will be used

to store the currently selected culture id.

 'private attributes, which are initialized by the parent user control using the

 'public properties this class exposes

 Private _webContext As Primavera.Platform.WebUI.WebContext

 Private _visualizationMode As VisualizationMode

 Private m_activeCulture As Guid

PRIMAVERA WebCentral SDK Manual

60

 Insert a new private property, which will persist the language dependent data for the

currently selected culture id.

 '<summary>

 ' The following property persists an language dependent business entity

 ' object of the record that is currently edited. This property is for

 ' internal use only.

 '</summary>

 Private Property BusinessEntityCulture() As Entities.ArticleCulture

 Get

 If Not Session("ArticleBEOCulture") Is Nothing Then

 Return CType(Session("ArticleBEOCulture"), Entities.ArticleCulture)

 End If

 Return Nothing

 End Get

 Set(ByVal Value As Entities.ArticleCulture)

 Session("ArticleBEOCulture") = Value

 End Set

 End Property

 Locate the method ClearSessionObjects and make sure that the language dependent data

stored in the session cache is properly removed. Add the following line to its implementation.

 '<summary>

 ' The following method will cleanup the session object which are used by this

 ' user control. You should call this method whenever the in the session state

 ' persisted objects are no longer necessary.

 '</summary>

 Private Sub ClearSessionObjects()

 Session.Remove("ArticleId")

 Session.Remove("ArticleBEO")

 Session.Remove("ArticleBEOCulture")

 End Sub 'ClearSessionObjects

 Locate the method ShowBusinessEntity. This method makes references to already not

existing properties of the entity object. We’ll need to adapt the code so it shows the

language dependent data. Change the following two property assignments.

 '<summary>

 ' The following method will be called whenever it is necessary to initialize

 ' the user control with values from the currently loaded business entity. This

 ' is basically everytime the case, when a user edits an existing record.

 '</summary>

 Private Sub ShowBusinessEntity()

 txtAutor.Text = Me.BusinessEntity.Author

 txtArticle.Text = Me.BusinessEntityCulture.Body

PRIMAVERA WebCentral SDK Manual

61

 txtDate.Value = Me.BusinessEntity.Date

 txtTitle.Text = Me.BusinessEntityCulture.Title

 txtImage.Text = Me.BusinessEntity.Image

 'update image selection control

 WebImageSelectionPopUpButton1.ImageHtml = Me.BusinessEntity.Image

 WebImageSelectionPopUpButton1.SetConfigurationParameters()

 End Sub 'ShowBusinessEntity

 Locate the method CreateBusinessEntity in which we’ll need to update the code, so that an

entity for the default culture is being correctly created and initialized.

 '<summary>

 ' The following method will be called whenever the user wishes to create

 ' a new record. This method initializes a new business entity object.

 '</summary>

 Private Sub CreateBusinessEntity()

 'initialize new business entity

 Dim businessEntity As New Entities.Article

 businessEntity.ID = Guid.NewGuid()

 businessEntity.Author = WebContext.User.UserName

 businessEntity.Date = DateTime.Now

 businessEntity.Image = String.Empty

 Dim businessEntityCulture As New Entities.ArticleCulture

 businessEntityCulture.ArticleID = businessEntity.ID

 businessEntityCulture.CultureID = m_activeCulture

 businessEntity.ArticleCultures.Add(businessEntityCulture)

 'initialize image button

 WebImageSelectionPopUpButton1.ImageHtml = businessEntity.Image

 WebImageSelectionPopUpButton1.SetConfigurationParameters()

 Me.BusinessEntity = businessEntity

 Me.BusinessEntityCulture = businessEntityCulture

 End Sub 'CreateBusinessEntity

 Locate the method EditBusinessEntity, which also makes references to not existing

properties in the business entity object. We’ll need to assure that the object that stores the

language dependent attributes is correctly initialized.

 '<summary>

 ' The following method will be called to initialize the internally used business

 ' entity object for being edited. It will load the specified record from database;

 ' the record's primary key needs to be set before.

 '</summary>

PRIMAVERA WebCentral SDK Manual

62

 Private Sub EditBusinessEntity()

 Dim businessLayer As New Business.Articles

 Me.BusinessEntity = businessLayer.Edit(WebContext.User.EngineContext,

Me.ArticleId)

 Me.BusinessEntityCulture =

Me.BusinessEntity.ArticleCultures.GetItemByCultureID(m_activeCulture)

 If Me.BusinessEntityCulture Is Nothing Then

 Me.BusinessEntityCulture = New Entities.ArticleCulture

 Me.BusinessEntityCulture.ArticleID = BusinessEntity.ID

 Me.BusinessEntityCulture.CultureID = m_activeCulture

 Me.BusinessEntity.ArticleCultures.Add(BusinessEntityCulture)

 End If

 'initialize image button

 WebImageSelectionPopUpButton1.ImageHtml = Me.BusinessEntity.Image

 WebImageSelectionPopUpButton1.SetConfigurationParameters()

 End Sub 'EditBusinessEntity

 Navigate to the method UpdateBusinessEntity which is called whenever the component

needs to write down the changes made to an article to database. We’ll need to serialize the

current values from the user interface to the article object.

 '<summary>

 ' The following method will be called whenever it is necessary to write all

changes

 ' down to database. This method will update the existing record, which was edited,

or

 ' inserts a new record to the database.

 '</summary>

 Private Sub UpdateBusinessEntity()

 Me.BusinessEntity.Author = txtAutor.Text

 Me.BusinessEntity.Date = txtDate.Value

 Me.BusinessEntity.Image = txtImage.Text

 Me.BusinessEntityCulture.Title = txtTitle.Text

 Me.BusinessEntityCulture.Body = txtArticle.Text

 Dim businessLayer As New Business.Articles

 businessLayer.Update(WebContext.User.EngineContext, Me.BusinessEntity)

 End Sub 'UpdateBusinessEntity

 Now let’s implement the method which will be responsible for populating the drop down list

with the available cultures. The WebCentral Platform provides a method named

ListInstalledLanguages, which returns a table of all available languages. We’ll use this

PRIMAVERA WebCentral SDK Manual

63

method to bind it against the drop down list’s data source.

 '<summary>

 ' The following method will be called to bind the installed portal cultures

 ' with the dropdown that allows the user to select a culture.

 '</summary>

 Public Sub InitializeCultureSelection()

 If Not Page.IsPostBack() Then

 Dim proxy As New Primavera.Platform.Security.Business.Parameters

 cultureSelection.DataSource =

proxy.ListInstalledLanguages(WebContext.User.EngineContext)

 cultureSelection.DataTextField = "Culture"

 cultureSelection.DataValueField = "ID"

 cultureSelection.SelectedIndex = 0

 cultureSelection.DataBind()

 End If

 If (m_activeCulture.Equals(Guid.Empty)) Then _

 m_activeCulture = New Guid(cultureSelection.SelectedValue)

 End Sub 'InitializePortalCultures

 Call the new method InitializeCultureSelection from the Page_Load event handler.

 '<summary>

 ' The following event handler will be called whenever the page loads; place all

 ' initialization code here.

 '</summary>

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

 'initialize culture selection

 InitializeCultureSelection()

 Me.WebImageSelectionPopUpButton1.PanelMaster = Me.panelArticleDetails

 Me.WebImageSelectionPopUpButton1.PanelDetail = Me.panelImageSelection

 Me.WebImageSelectionPopUpButton1.WebImageSelectionControl =

Me.controlImageSelection

 If Not Me.IsPostBack Then

Me.WebImageSelectionPopUpButton1.SetConfigurationParameters()

 End Sub 'Page_Load

 Implement a new event handler called whenever the user changes the currently selected

culture in the web user control. This code needs to assure that the previous language

dependent attributes are correctly stored and show the language dependent values for the

new selected culture.

PRIMAVERA WebCentral SDK Manual

64

 '<summary>

 '</summary>

 Private Sub cultureSelection_SelectedIndexChanged(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles cultureSelection.SelectedIndexChanged

 'store the updated values for the current culture

 Me.BusinessEntityCulture.Title = txtTitle.Text

 Me.BusinessEntityCulture.Body = txtArticle.Text

 'change the current culture and show the culture dependent values

 m_activeCulture = New Guid(cultureSelection.SelectedValue)

 Me.BusinessEntityCulture =

Me.BusinessEntity.ArticleCultures.GetItemByCultureID(m_activeCulture)

 If Me.BusinessEntityCulture Is Nothing Then

 Me.BusinessEntityCulture = New Entities.ArticleCulture()

 Me.BusinessEntityCulture.ArticleID = Me.BusinessEntity.ID

 Me.BusinessEntityCulture.CultureID = m_activeCulture

 Me.BusinessEntity.ArticleCultures.Add(Me.BusinessEntityCulture)

 End If

 txtTitle.Text = Me.BusinessEntityCulture.Title

 txtArticle.Text = Me.BusinessEntityCulture.Body

 End Sub 'cultureSelection_SelectedIndexChanged

Step 6.3 – Changes in the Visualization Component

Now let’s see what needs to be done in the visualization components. The user logged in has a

language associated, but also can change the default language using the country flags that

appear in the portal header. The WebContent.User object has significant information about the

current user and can be used to determine the current language for the user session. With this

information we now can easily perform the changes in the article list component, as we just need

to update the SQL query to reflect the currently selected culture.

 In the WebUI project, Open the file ArticleList.ascx.vb and locate the method BuildQuery.

Replace it’s implementation so that it meets the following code segment:

 Private Function BuildQuery() As String

 Dim strSql As String = "SELECT TOP $1 * FROM KNB_Articles "

 strSql &= vbCrLf & "INNER JOIN KNB_ArticleCultures ON "

 strSql &= vbCrLf & " KNB_ArticleCultures.ArticleID = KNB_Articles.ID"

 strSql &= vbCrLf & " AND KNB_ArticleCultures.CultureID = @2 ORDER BY $3"

 Return Platform.Engine.Business.SqlUtils.FormatSql(strSql, _

 propertyBag.NumArticles, _

 WebContext.User.Culture.CultureID, _

 GetOrderByField())

 End Function

PRIMAVERA WebCentral SDK Manual

65

Step 6.4 – Testing the multi-language support

 Use the Visual Studio 2008 IDE to compile the solution in DEBUG mode.

 Close the Visual Studio 2008 IDE and run the eModuleDeploy utility, which you will find in

the Tools folder of the PRIMAVERA WebCentral SDK.

 Indicate the complete filename of our module’s solution and start the deployment process.

 You might have noticed that we changed the database table structure for the multi-language

support. Please use the SQL Query Analyzer and the script you can find in appendix 17 [page

150] to update the database structure.

 Currently, the portal Intranet just supports one single language. We will need to define this

portal as multi language. Therefore, launch the Site Administration utility and navigate to

Portais | Criação de Portais. Double-click the record for the Intranet portal and select the

Language tab. Add support for the English language to the Intranet portal and confirm.

 Open a browser and navigate to the KnowledgeBase Administration page. Edit one of the
existing articles and try to edit the article in English.

PRIMAVERA WebCentral SDK Manual

66

 Try to change the current language using the drop down listbox at the top of the form. The
language dependent values should be updated correctly.

 Confirm the modified article and navigate to the KnowledgeBase Article List. The list appears
in the current default language.

 Click on the english flag in the portal header. The KnowledgeBase Article List should now
appear in english.

Step 7 – Supporting Approvals
The WebCentral Platform for Approvals permits the definition of workflows and approval states.

The PRIMAVERA WebCentral uses this approval platform in some human resources components

as well as in the content management components, like press releases, messages, etc.

This exercise will explain how our customized KnowledgeBase component can take advantage of

the approval platform. We’ll also dive into content categories. Categories are used to differentiate

content of the same type. See, for example, internal messages and public messages. Categories

also permit to define permissions on a different level than component based. Having the category

model implemented, you will be able to define permissions per content category type, e.g. user

xpto does not have permissions to view internal messages.

Step 7.1 – Preparing the Business Entities for Approvals

First of all, we’ll need some new private attributes and public accessor properties in the business

entity class. These new attributes will store information about the current approval state as well

as the associated categories for a given KnowledgeBase article.

 Open the project Primavera.KnowledgeBase.Entities and edit the file Article.vb that

contains our business entity class declaration. Insert the following variable declarations to

the list of private member attributes:

 Private m_article As String

 Private m_published As Boolean

 Private m_categories As Primavera.Platform.Services.Entities.EntityCategories = _

 New Primavera.Platform.Services.Entities.EntityCategories

PRIMAVERA WebCentral SDK Manual

67

 Private m_locked As Boolean

 Private m_approvalId As Guid

 Add the new public accessor properties to the KnowledgeBase Article Entity:

 <BusinessEntityField("Article")> _

 Public Property Article() As String

 Get

 Return m_article

 End Get

 Set(ByVal Value As String)

 m_article = Value

 End Set

 End Property

 <BusinessEntityField("Published", IsReadOnly:=True)> _

 Public Property Published() As Boolean

 Get

 Return m_published

 End Get

 Set(ByVal Value As Boolean)

 m_published = Value

 End Set

 End Property

 <BusinessEntityDetailAttribute(ForeignField:="EntityID")> _

 Public Property Categories() As

Primavera.Platform.Services.Entities.EntityCategories

 Get

 Return m_categories

 End Get

 Set(ByVal Value As Primavera.Platform.Services.Entities.EntityCategories)

 m_categories = Value

 End Set

 End Property

 <BusinessEntityField("Locked", IsReadOnly:=True)> _

 Public Property Locked() As Boolean

 Get

 Return m_locked

 End Get

 Set(ByVal Value As Boolean)

 m_locked = Value

 End Set

 End Property

 <BusinessEntityField("ApprovalID", IsReadOnly:=True)> _

 Public Property ApprovalID() As Guid

 Get

 Return m_approvalId

PRIMAVERA WebCentral SDK Manual

68

 End Get

 Set(ByVal Value As Guid)

 m_approvalId = Value

 End Set

 End Property

 Open the file ArticleList.vb in the folder PropertyBags and declare a new private member

variable as well as a new public accessor property:

 Private m_colCategories As New GuidCollection

 Public Property Categories() As GuidCollection

 Get

 Return m_colCategories

 End Get

 Set(ByVal Value As GuidCollection)

 m_colCategories = Value

 End Set

 End Property

Step 7.2 – Preparing the Data Services for Approvals

Currently, our Data Service Layer does not implement any methods – in fact it inherits all

standard operations from its base class DataServiceBase. We now need to insert two

customized methods to the data service layer, which are responsible for querying approval

information from the database.

 Open the file Article.vb from the project Primavera.KnowledgeBase.Data and insert the

following two methods to the class.

 '<summary>

 ' The following method will query the approval rule which was associated to

 ' to the specified categories.

 '</summary>

 Public Function GetApprovalRuleID(_

 ByVal objContext As Primavera.Platform.Engine.Entities.EngineContext, _

 ByVal objCategories As Primavera.Platform.Engine.Entities.Fields) As Guid

 Dim strSQL As String = "SELECT TOP 1 [ApprovalRuleID] FROM [PLT_Categories] " _

 & "WHERE [ID] IN $1 AND [ApprovalRuleID] IS NOT NULL"

 Dim strCats As String = String.Empty

 Dim objField As Primavera.Platform.Engine.Entities.Field

 For Each objField In objCategories

 strCats = strCats + SqlUtils.FormatSql("@1, ", CType(objField.Value, Guid))

 Next

 If (strCats.Length > 0) Then

 strCats = "(" + strCats.Substring(0, strCats.Length - 2) + ")"

 End If

 strSQL = SqlUtils.FormatSql(strSQL, strCats)

PRIMAVERA WebCentral SDK Manual

69

 Dim objCmd As New System.Data.SqlClient.SqlCommand(strSQL,

objContext.RequestConnection)

 Dim guidApprovalRuleID As Guid = CType(objCmd.ExecuteScalar(), Guid)

 objContext.ReleaseConnection()

 objCmd.Dispose()

 Return guidApprovalRuleID

 End Function 'GetApprovalRuleID

 '<summary>

 ' The following method will return identifier and title of a knowledge

 ' base article for a given approval instance identifier.

 '</summary>

 Public Sub GetContentFromRuleID(_

 ByVal objContext As Primavera.Platform.Engine.Entities.EngineContext, _

 ByVal guidApprovalId As Guid, _

 ByRef guidArticleId As Guid, _

 ByRef strTitle As String)

 Dim strSQL As String = SqlUtils.FormatSql("SELECT [ID],[Article] " _

 & "FROM [KNB_Articles] WHERE [ApprovalID] = @1", guidApprovalId)

 Dim objTable As DataTable = List.List(objContext, strSQL)

 If (objTable.Rows.Count = 1) Then

 guidArticleId = CType(objTable.Rows(0)("ID"), Guid)

 strTitle = CType(objTable.Rows(0)("Article"), String)

 End If

 End Sub

End Class

Step 7.3 – Preparing the Business Layer for Approvals

 In the Primavera.KnowledgeBase.Business project, open the file Articles.vb and

implement a new method which will verify the article publishing permission for the current

user. This method will simply call a method of its base class to check either the current user

has permission to publish a message for the associated article categories.

 Public Overloads Function VerifyPublishingPermission(ByVal Context As _

 EngineContext, ByVal ID As Guid, ByRef OutMessage As String) As Boolean

 Return BaseVerifyPublishingPermission(Context, ID, OutMessage)

 End Function

 Approval rules will be invoked whenever a user tries to publish an article. Currently, our

administration component does not support the publishing concept – an article is

automatically published whenever the user saves it. In order to support the publishing

concept, we’ll need to add some methods to the Article class:

 Public Sub Publish(ByVal Context As EngineContext, ByVal ID As Guid)

 BasePublish(Context, ID)

 End Sub

PRIMAVERA WebCentral SDK Manual

70

 Public Sub UnPublish(ByVal Context As EngineContext, ByVal ID As Guid)

 BaseUnPublish(Context, ID)

 End Sub

 Public Overloads Sub Lock(ByVal objContext As EngineContext, _

ByVal guidID As Guid, ByVal guidApprovalID As Guid)

 BaseLock(objContext, guidID, guidApprovalID)

 End Sub

 Public Overloads Sub UnLock(ByVal objContext As EngineContext, _

ByVal guidID As System.Guid)

 BaseUnLock(objContext, guidID)

 End Sub

 Implement the two methods which are necessary to support categories for this module. Still

in the Article class, add the following two methods:

 Public Sub MoveCategoryItems(ByVal Context As EngineContext, ByVal SourceCategoryID

As Guid, _

 ByVal DestCategoryID As Guid)

 BaseMoveCategoryItems(Context, SourceCategoryID, DestCategoryID)

 End Sub

 Public Sub RemoveCategoryItems(ByVal Context As EngineContext, ByVal CategoryID As

Guid)

 BaseRemoveCategoryItems(Context, CategoryID)

 End Sub

 Our business layer still needs to wrap the calls to the two methods that we introduced to the

data layer to support the approvals. Insert the following two methods to the Article class.

 Public Function GetApprovalRuleID(ByVal objContext As EngineContext, _

 ByVal objCategories As Primavera.Platform.Engine.Entities.Fields) As Guid

 Dim objDSO As New Data.Articles

 Return objDSO.GetApprovalRuleID(objContext, objCategories)

 End Function

 Public Sub GetContentFromRuleID(ByVal objContext As EngineContext, _

 ByVal guidApprovalID As Guid, ByRef guidArticleID As Guid, ByRef strTitle As

String)

 Dim objDSO As New Data.Articles

 objDSO.GetContentFromRuleID(objContext, guidApprovalID, guidArticleID,

strTitle)

 End Sub

PRIMAVERA WebCentral SDK Manual

71

Step 7.4 – Implementing Approvals in the Module

 Open the project Primavera.KnowledgeBase.Modules and add a reference to the

assembly Primavera.Platform.Services.Business, which can be found in the PRIMAVERA

WebCentral SDK bin folder.

 In the Approvals folder, edit the file ApprovalTypesIDs.vb. This class contains unique

approval identifiers, which are used by the PRIMAVERA WebCentral Platform to distinguish

between the various types of approvals. Each content type which is subject to approval must

have a unique identifier.

 Public Shared ReadOnly Property Articles() As Guid

 Get

 Return New Guid("{448E2B4B-979E-4c1a-878E-769BD0D7FEFD}")

 End Get

 End Property

 Open the file ApprovalInstances.vb for editing. This class contains all the logic for the

article approval, which are quite a few lines of code. Please refer to appendix 18 [page 152]

to see the necessary implementation.

 Please make sure that the identifier MyModuleID, which is declared at the top of the file,

matches the identifier for your module (you can consult this identifier in the resource file

Res.resx for the project Primavera.KnowledgeBase.Modules).

 The file ApprovalRules.vb has the approval rule configuration for this module. Localize the

method ApprovalRuleConfig and implement the following lines:

 Public Function ApprovalRuleConfig(ByVal guidTypeID As System.Guid) _

 As ApprovalRuleConfig Implements IApprovalRules.ApprovalRuleConfig

 'In this module all content types use the same configuration

 Dim objRuleConfig As New ApprovalRuleConfig

 With objRuleConfig

 .ID = guidTypeID 'Unique id for each content type

 .StartStateBlocked = True

 .EndStatesBlocked = True

 .IntermediateStatesBlocked = False

 .IntermediateStatesAllowed = True

 .StartState.ID = New Guid("{FB596820-9BF3-45b8-B0E3-3EE9A7A16DC8}")

 .StartState.Name = "Pending"

 .EndApprovedState.ID = New Guid("{67999B91-17E1-4cdb-A161-539767A8C408}")

 .EndApprovedState.Name = "Published"

 .EndRejectedState.ID = New Guid("{86B398B6-5386-4001-B324-5E4DE03CD9CF}")

 .EndRejectedState.Name = "Rejected"

 .AllowNotifications = True

 .SimpleApprovalsOnly = False

 End With

PRIMAVERA WebCentral SDK Manual

72

 Return objRuleConfig

 End Function

 Now we just need to enable approvals for our modules – this is done in the Approvals class.

Localize the methods SupportRules and SupportInstances and change their return values

from False to True.

 The method ListTypes returns a collection of supported content approvals. Here we need to

make sure that our new approval type is correctly registered and returned to the caller.

 Public Function ListTypes() As ServiceList Implements IApprovals.ListTypes

 Dim objCol As New ServiceList

 objCol.Add(ApprovalTypesIDs.Articles, "Article Categories")

 Return objCol

 End Function

Step 7.5 – Implementing Categories in the Module

 Open the file CategoryTypeIds.vb, which you can find in the folder Categories of the

project Primavera.KnowledgeBase.Modules. Let’s define a new identifier for the category

of KnowledgeBase articles.

 Public Shared ReadOnly Property Articles() As Guid

 Get

 Return New Guid("{B9F475F4-2C54-463f-8FD9-F6318EDAE971}")

 End Get

 End Property

 The class Category will provide further information on the module’s supported categories.

Locate the method List and modify the code so that it returns the new category as result.

 Public Function List() As ServiceList Implements ICategories.List

 Dim objCol As New ServiceList

 objCol.Add(CategoryTypesIDs.Articles, "Categorias de Artigos")

 Return objCol

 End Function

 Next we need to specify the categories details, which takes place in the Edit method. Here

we also will let the PRIMAVERA WebCentral Platform know that the new category supports

the approval workflow.

 Public Function Edit(ByVal CategoryTypeID As System.Guid) As Category Implements

ICategories.Edit

 Dim objCat As New Category

PRIMAVERA WebCentral SDK Manual

73

 If CategoryTypeID.Equals(CategoryTypesIDs.Articles) Then

 objCat.Name = "Categorias de Artigos"

 objCat.SupportsApprovals = True

 objCat.ApprovalTypeID = ApprovalTypesIDs.Articles

 Else

 Return Nothing ' Item not found

 End If

 objCat.ID = CategoryTypeID

 Return objCat

 End Function

Step 7.6 – Updating the Article Administration UI

The user interface that we currently have for introducing the KnowledgeBase Articles is a bit

inappropriate for the new functionality that we are implementing – we need to be able to attach

categories to the article as well as support the publishing mechanism. In this step we’ll polish the

current user interface to support these new features.

 First of all, we will have to make sure that only published articles appear in the list of

KnowledgeBase Articles. Open the project Primavera.KnowledgeBase.WebUI and edit the

file ArticleList.ascx.vb. Locate the BuildQuery method and add an additional SQL WHERE

statement to the query that is returned by the method:

 Private Function BuildQuery() As String

 Dim strSql As String = "SELECT TOP $1 * FROM KNB_Articles "

 strSql &= vbCrLf & "INNER JOIN KNB_ArticleCultures ON "

 strSql &= vbCrLf & " KNB_ArticleCultures.ArticleID = KNB_Articles.ID"

 strSql &= vbCrLf & " AND KNB_ArticleCultures.CultureID = @2 " _

 & "WHERE KNB_Articles.Published = 1 ORDER BY $3"

 Return Platform.Engine.Business.SqlUtils.FormatSql(strSql, _

 propertyBag.NumArticles, _

 WebContext.User.Culture.CultureID, _

 GetOrderByField())

 End Function

 Now let’s get to the administration user interface. Open the ArticleAdminDetail.ascx file

and register three new user controls, provided by the PRIMAVERA WebCentral Platform,

which will allow us to select categories for the KnowledgeBase Articles and display

information messages.

 <%@ Register TagPrefix="WebC" TagName="WebCategoryPopUpButton"

 Src="../Primavera.Platform/WebCategoryPopUpButton.ascx" %>

 <%@ Register TagPrefix="WebC" TagName="WebCategorySelection"

 Src="../Primavera.Platform/WebCategorySelection.ascx" %>

 <%@ Register TagPrefix="WebC" TagName="WebGridMessage"

Src="../Primavera.Platform/WebGridMessage.ascx" %>

PRIMAVERA WebCentral SDK Manual

74

 Place the message box control right before we declare the article detail panel – this message

box will be used to display information about the current state of the KnowledgeBase Article

we are editing.

 (ommitted)

 <WebC:webgridmessage id="messageBox" visible="False"

runat="server"></WebC:webgridmessage>

 <asp:Panel ID="panelArticleDetails" runat="server" Visible="True">

 <!--

 The panel contains all controls which are necessary to insert/edit a

new/existing

 item; it will demonstrate some special controls, such as the Infragistics

DateTime

 picker as well as the HTML editor, for composing the article body. This

panel will

 be hidden whenever the user clicked the image button. To select an image

for the

 message this panel will be hidden and the image selection panel (see below)

will be

 shown.

 -->

 <table>

 (ommitted)

 In the second row of the main table, right below the culture selection row, insert a new row

which will allow us to define a text based unique article reference – this reference is later

used in the list of pending approvals to identify an article.

 (ommitted)

 <tr>

 <!-- Culture Selection Box -->

 <td class="width_s alignRight">Culture</td>

 <td class="width_l">

 <asp:DropDownList ID="cultureSelection"

 runat="server" CssClass="data_input width_xl" AutoPostBack="True">

 </asp:DropDownList></td>

 </tr>

 <tr>

 <!-- Unique Article Key -->

 <td class="width_s alignRight">Article Reference</td>

 <td class="width_l">

 <asp:textbox id="txtArticleRef" onblur="this.className='data_input width_xl';"

 onfocus="this.className='data_input_over width_l';"

 runat="server" CssClass="data_input width_xl" MaxLength="50">

 </asp:textbox>

 </td>

 </tr>

 <tr>

 (ommitted)

PRIMAVERA WebCentral SDK Manual

75

 At the bottom, right before the main table is being closed, insert a new row which will

contain the button to select the associated categories for the article.

 (ommitted)

 <tr>

 <!-- Articles Categories -->

 <td class="width_s alignRight">Categories</td>

 <td class="width_xl">

 <WebC:webcategorypopupbutton id="categorySelection" runat="server">

 </WebC:webcategorypopupbutton>

 </td>

 </tr>

 </table>

 <!-- initialize the HTML editor (control id txtArticle) -->

 <script language="javascript" defer>

 editor_generate('<%=ID2Name(Me.ClientID)%>:txtArticle');

 </script>

 (ommitted)

 We also need a new button between the Save –and Back button – this button will allow us to

publish/ unpublish the current KnowledgeBase Article. In the table that specifies the

command buttons, add a new column containing the Publish button.

 (ommitted)

 <table class="filter_btns" cellSpacing="0" cellPadding="0" border="0">

 <tr>

 <td>

 <asp:button id="btnConfirm"

onmouseover="this.className='btn_m_color_over';"

onmouseout="this.className='btn_m_color';"

runat="server" CssClass="btn_m_color" Text="Confirm">

</asp:button></td>

 <td>

 <asp:button id="btnPublish"

onmouseover="this.className='btn_m_color_over';"

onmouseout="this.className='btn_m_color';"

runat="server" CssClass="btn_m_color" Text="Publish">

</asp:button></td>

 <td>

 <asp:button id="btnBack"

onmouseover="this.className='btn_m_color_over';"

onmouseout="this.className='btn_m_color';"

runat="server" CssClass="btn_m_color" Text="Back">

</asp:button></td>

 </tr>

 </table>

 (ommitted)

PRIMAVERA WebCentral SDK Manual

76

 Now we just need to declare the category selection panel at the bottom of the file. The

category selection panel will be shown whenever the user clicks on the category selection

button.

 (ommitted)

 <asp:panel id="panelImageSelection" runat="server" Visible="False">

 <!-- image selection control panel; will only be shown when the user clicked on

 the image selection button in the details panel. -->

 <WebC:webimageselection id="controlImageSelection" runat="server">

 </WebC:webimageselection>

 </asp:panel>

 <asp:panel id="panelCategorySelection" runat="server" Visible="False">

 <!-- category selection control; will only be shown when the user clicked on

 the category selection button -->

 <WebC:webcategoryselection id="controlCategorySelection" runat="server">

 </WebC:webcategoryselection>

 </asp:panel>

 In order to use the approval engine that the PRIMAVERA WebCentral Platform provides we’ll

need references to the assemblies

- Primavera.Platform.Services.Entities

- Primavera.Platform.Services.Business

to the project Primavera.KnowledgeBase.WebUI. These assemblies can be found in the

bin folder of the PRIMAVERA WebCentral SDK installation path.

 To shorten up some variable type declaration, let’s import these assemblies at the top of the

code-behind file ArticleAdminDetail.ascx.vb.

 Imports Primavera.Platform.WebUI.Controls

 Imports Primavera.Platform.Services.Entities

 Imports Primavera.Platform.Services.Business

 Like already done before, we declare the controls borrowed by the PRIMAVERA WebCentral

Platform in class ArticleAdminDetail. Note that these variables might already be declared

by the Visual Studio designer and that you might remove these declarations from the file

ArticleAdminDetail.ascx.designer.vb.

 (omitted)

 'declare user controls referenced from the PRIMAVERA WebCentral Platform

 'here in the code behind file, using the exact variable name as stated in the ascx

 Protected WithEvents WebImageSelectionPopUpButton1 As

 Primavera.Platform.WebUI.WebImageSelectionPopUpButton

 Protected WithEvents controlImageSelection As

Primavera.Platform.WebUI.WebImageSelection

 Protected WithEvents categorySelection As

Primavera.Platform.WebUI.WebCategoryPopUpButton

 Protected WithEvents controlCategorySelection As

Primavera.Platform.WebUI.WebCategorySelection

 Protected WithEvents messageBox As Primavera.Platform.WebUI.Controls.WebGridMessage

PRIMAVERA WebCentral SDK Manual

77

 (omitted)

 We also will repeatedly need the unique module –and approval type identifier, so it’s good

practise to declare a variable with these values. Please make sure that the below values

match with the ones in your project. See the Primavera.KnowledfeBase.Module project

for reference.

 'private constants

 Private moduleId As New Guid("39af2e6e-e68e-4111-9410-24de9682421d")

 Private moduleApprovalTypeId As New Guid("448E2B4B-979E-4c1a-878E-769BD0D7FEFD")

 In several places we will show messages to the user, using the MessageBox component

provided by the PRIMAVERA WebCentral Platform. To easen up the usage, we’ll provide a

method which does the property initialization and visualization stuff.

 '<summary>

 ' The following method will show the message box control and initialize

 ' the controls properties, like title, message and style.

 '</summary>

 Public Sub ShowMessage(_

 ByVal Type As Platform.WebUI.Controls.WebGridMessageType, _

 ByVal Title As String, _

 ByVal Message As String)

 messageBox.Visible = True

 messageBox.MessageType = Type

 messageBox.MessageTitle = Title

 messageBox.MessageText = Message

 messageBox.Refresh()

 End Sub

 A KnowledgeBase Article must be associated at least to one category – this is a requirement

which we’ll need to validate before we update the record in the database. Implement a new

method which checks this precondition and raise an exception if the article does not meet the

validation rules.

 '<summary>

 ' The following method will validate the current artucle before it

 ' is going to be written to database.

 '</summary>

 Private Sub ValidateBusinessEntity()

 Dim validationMessage As String = String.Empty

 If BusinessEntity.Categories.Count <= 0 Then _

 Throw New System.Exception("The Knowledge Base Article " _

 & "needs to be associated to at least one category")

 End Sub 'ValidateArticle

PRIMAVERA WebCentral SDK Manual

78

 We already implemented the ShowBusinessEntity method a while ago to initialize the user

interface controls with the values from the business entity object. However, we now have a

new attribute, the article reference, which we’ll need to initialize. Insert a new line to this

method, which will initialize the article reference textbox.

 '<summary>

 ' The following method will be called whenever it is necessary to initialize

 ' the user control with values from the currently loaded business entity. This

 ' is basically everytime the case, when a user edits an existing record.

 '</summary>

 Private Sub ShowBusinessEntity()

 txtArticleRef.Text = Me.BusinessEntity.Article

 txtAutor.Text = Me.BusinessEntity.Author

 txtArticle.Text = Me.BusinessEntityCulture.Body

 txtDate.Value = Me.BusinessEntity.Date

 txtTitle.Text = Me.BusinessEntityCulture.Title

 txtImage.Text = Me.BusinessEntity.Image

 'update image selection control

 WebImageSelectionPopUpButton1.ImageHtml = Me.BusinessEntity.Image

 WebImageSelectionPopUpButton1.SetConfigurationParameters()

 End Sub 'ShowBusinessEntity

 The method UpdateBusinessEntity implements the opposite way – writing the values from

the user interface to the business entity object. Here, we also need to serialize the article

reference. This is also a good place to do the business entity validation, as this method is

usually called whenever the entity object is being serialized to database.

 '<summary>

 ' The following method will be called whenever it is necessary to write all

changes

 ' down to database. This method will update the existing record, which was edited,

or

 ' inserts a new record to the database.

 '</summary>

 Private Sub UpdateBusinessEntity()

 Me.BusinessEntity.Article = txtArticleRef.Text

 Me.BusinessEntity.Author = txtAutor.Text

 Me.BusinessEntity.Date = txtDate.Value

 Me.BusinessEntity.Image = txtImage.Text

 Me.BusinessEntityCulture.Title = txtTitle.Text

 Me.BusinessEntityCulture.Body = txtArticle.Text

 Me.ValidateBusinessEntity()

 Dim businessLayer As New Business.Articles

 businessLayer.Update(WebContext.User.EngineContext, Me.BusinessEntity)

 End Sub 'UpdateBusinessEntity

PRIMAVERA WebCentral SDK Manual

79

The method CreateBusinessEntity is called whenever the user chose to create a new

KnowledgeBase Article. This method is responsible for initializing the internally used business

entity object. Because of the new attribute, as well as the categories, we’ll need to update this

code to initialize these properties.

 '<summary>

 ' The following method will be called whenever the user wishes to create

 ' a new record. This method initializes a new business entity object.

 '</summary>

 Private Sub CreateBusinessEntity()

 'initialize new business entity

 Dim businessEntity As New Entities.Article

 businessEntity.ID = Guid.NewGuid()

 businessEntity.Article = String.Empty

 businessEntity.Author = WebContext.User.UserName

 businessEntity.Date = DateTime.Now

 businessEntity.Image = String.Empty

 Dim businessEntityCulture As New Entities.ArticleCulture

 businessEntityCulture.ArticleID = businessEntity.ID

 businessEntityCulture.CultureID = m_activeCulture

 businessEntity.ArticleCultures.Add(businessEntityCulture)

 'categories

 categorySelection.SelectedCategories = New ArrayList

 categorySelection.SetConfigurationParameters()

 'initialize image button

 WebImageSelectionPopUpButton1.ImageHtml = businessEntity.Image

 WebImageSelectionPopUpButton1.SetConfigurationParameters()

 Me.BusinessEntity = businessEntity

 Me.BusinessEntityCulture = businessEntityCulture

 End Sub 'CreateBusinessEntity

 Same procedure with the method EditBusinessEntity. We’ll need to initialize the category

selection control with the categories associated to the loaded KnowledgeBase Article as well

initialize the Publish buttons caption in dependency of the current publishing state (the

caption of this button toggles between Publish and Unpublish)

 '<summary>

 ' The following method will be called to initialize the internally used business

 ' entity object for being edited. It will load the specified record from database;

 ' the record's primary key needs to be set before.

 '</summary>

 Private Sub EditBusinessEntity()

PRIMAVERA WebCentral SDK Manual

80

 Dim businessLayer As New Business.Articles

 Me.BusinessEntity = businessLayer.Edit(WebContext.User.EngineContext,

Me.ArticleId)

 Me.BusinessEntityCulture =

Me.BusinessEntity.ArticleCultures.GetItemByCultureID(m_activeCulture)

 If Me.BusinessEntityCulture Is Nothing Then

 Me.BusinessEntityCulture = New Entities.ArticleCulture

 Me.BusinessEntityCulture.ArticleID = BusinessEntity.ID

 Me.BusinessEntityCulture.CultureID = m_activeCulture

 Me.BusinessEntity.ArticleCultures.Add(BusinessEntityCulture)

 End If

 'categories

 categorySelection.SelectedCategories = New ArrayList

 For Each Category As EntityCategory In Me.BusinessEntity.Categories

 categorySelection.SelectedCategories.Add(Category.CategoryID)

 Next

 categorySelection.SetConfigurationParameters()

 'initialize image button

 WebImageSelectionPopUpButton1.ImageHtml = Me.BusinessEntity.Image

 WebImageSelectionPopUpButton1.SetConfigurationParameters()

 'show the correct text for the publishing/unpublishing button

 btnPublish.Text = IIf(Me.BusinessEntity.Published, "Unpublish", "Publish")

 'show information whenever the current article is waiting for approval

 If Me.Mode = VisualizationMode.Edition _

 AndAlso Not Me.BusinessEntity Is Nothing _

 AndAlso Me.BusinessEntity.Locked Then

 Me.ShowMessage(WebGridMessageType.Info, String.Empty, _

 "An approval is pending for this article")

 End If

 End Sub 'EditBusinessEntity

 The next method GetApprovalID will try to query the approval typ id that needs to be

applicated to the current article. The approval type depends on the categories that were

associated to the article and which approval rules have been associated to these categories.

This method will return an empty Guid if no approval rule has been associated to the

categories, otherwise the approval rule id.

 '<summary>

 ' The following method will return the approval identifier for the specified

 ' categories.

 '</summary>

 Private Function GetApprovalRuleID(ByVal objCategories As _

PRIMAVERA WebCentral SDK Manual

81

Primavera.Platform.Services.Entities.EntityCategories) As Guid

 Dim objFields As New Primavera.Platform.Engine.Entities.Fields

 Dim objCat As Primavera.Platform.Services.Entities.EntityCategory

 Dim objBusiness As New Business.Articles

 For Each objCat In objCategories

 objFields.Add(objCat.CategoryName, objCat.CategoryID)

 Next

 Return objBusiness.GetApprovalRuleID(WebContext.User.EngineContext, objFields)

 End Function 'GetApprovalRuleID

 The next method will check if the currently edited KnowledgeBase Article is locked, which

means, it was published and sent to approval, but has not been approved yet. In this case,

the user receives a message informing him on this matter.

 '<summary>

 ' The following method will check if the specified KnowledgeBase article

 ' is currently locked.

 '</summary>

 Private Function ArticleIsLocked(ByVal guidID As Guid) As Boolean

 Dim objBusiness As New Business.Articles

 Return DirectCast(objBusiness.EditField(_

WebContext.User.EngineContext, guidID, "Locked"), Boolean)

 End Function 'ArticleIsLocked

 The following method will be called whenever an article has been sent to approval. This flag

in the business entity object, in conjunction with the Published flag, allows us to easily

determine the state of the article.

 '<summary>

 ' The following method will set the locked flag and update the

 ' approval identifier for the specified article

 '</summaery>

 Private Sub LockArticle(ByVal guidArticleID As Guid, ByVal guidApprovalID As Guid)

 Dim objBusiness As New Business.Articles

 objBusiness.Lock(WebContext.User.EngineContext, guidArticleID, guidApprovalID)

 ShowMessage(WebGridMessageType.Info, String.Empty, _

 "The new article has been submitted to approvation.")

 End Sub 'LockArticle

 Now it’s time to implement the method which actually starts the approval for the business

entity object. This method will sent the article for approval to the responsible user and

broadcasts notification messages, if so configured.

 '<summary>

 ' Start Article Approval

 '</summary>

PRIMAVERA WebCentral SDK Manual

82

 Private Function StartApproval(ByVal guidArticleID As Guid, _

ByVal guidApprovalRuleID As Guid, ByRef guidApprovalID As Guid) As ApprovalResponse

 Dim objBusiness As New Platform.Services.Business.ApprovalServices

 Dim objRequest As New ApprovalRequest

 With objRequest

 .ApprovalID = guidApprovalID

 .ApprovalRuleID = guidApprovalRuleID

 .ModuleID = moduleId

 .TypeID = moduleApprovalTypeId

 End With

 Return objBusiness.StartApproval(WebContext.User.EngineContext, objRequest)

 End Function 'StartApproval

 The next method is a high-level method, which is called directly from the Publish button

event handler. This method actually checks if the article is subject to approval and

respectively starts the approval process calling the StartApproval method. The article will

be directly saved and publish if it does not have any category with approval rule associated.

 Private Function ApprovalAndPublish(Optional ByRef blnLocked As Boolean = False) As

Boolean

 'instanciate business object

 Dim objBusiness As New Business.Articles

 'Default result (everything OK)

 ApprovalAndPublish = True

 'Get applicable approval rule

 Dim guidApprovalRuleID As Guid = GetApprovalRuleID(BusinessEntity.Categories)

 'Subject to approval?

 If guidApprovalRuleID.Equals(Guid.Empty) Then

 'Publish the KnowledgeBase Article

 objBusiness.Publish(WebContext.User.EngineContext, BusinessEntity.ID)

 Else

 'Register the approval

 Dim guidApprovalID As Guid = Guid.NewGuid

 Dim objResponse As ApprovalResponse = StartApproval(BusinessEntity.ID, _

 guidApprovalRuleID, guidApprovalID)

 'The approval succeeded?

 If objResponse.Executed Then

 'If the approval whas not auto ended, lock the content

 If (Not objResponse.Finished) Then '

 LockArticle(BusinessEntity.ID, guidApprovalID)

 blnLocked = True

 Else

 objBusiness.Publish(WebContext.User.EngineContext,

BusinessEntity.ID)

 End If

PRIMAVERA WebCentral SDK Manual

83

 Else

 ApprovalAndPublish = False 'Approval failed

 End If

 End If

 End Function 'ApprovalAndPublish

 Even though we hid the message box in the ASCX file we need to make sure that it’s hidden

with every server roundtrip to avoid that expired information messages are shown to the

user. Place the following line in the Page_Load event handle.

 'hide the message box

 messageBox.Visible = False

 Create a new event handler for the category selection control. This method will be called

when the user associated categories to the article and clicked on the Confirm button. We

need to update the business entity object’s category properties with the associated

categories.

 Private Sub categorySelection_CategorySelected(_

 ByVal selectedCategories As System.Collections.ArrayList) _

 Handles categorySelection.CategorySelected

 Dim entityCategories As New

Primavera.Platform.Services.Entities.EntityCategories

 Dim entityCategory As Primavera.Platform.Services.Entities.EntityCategory

 For Each category As Guid In selectedCategories

 entityCategory = New Primavera.Platform.Services.Entities.EntityCategory

 entityCategory.CategoryID = category

 entityCategories.Add(entityCategory)

 Next

 Me.BusinessEntity.Categories = entityCategories

 End Sub 'WebCategoryPopUpButton1_CategorySelected

 The last step is implementing the code for the Publish button, which actually treats the

publishing and unpublishing process, and makes use of the helper methods, which we coded

before.

 Private Sub btnPublish_Click(ByVal sender As Object, ByVal e As System.EventArgs) _

Handles btnPublish.Click

 Try

 Dim businessObject As New Business.Articles

 If Me.BusinessEntity.Published Then

 businessObject.UnPublish(WebContext.User.EngineContext,

BusinessEntity.ID)

 'refresh the business entity object from database

 Me.ArticleId = BusinessEntity.ID

PRIMAVERA WebCentral SDK Manual

84

 Me.EditBusinessEntity()

 'show publication message

 Me.ShowMessage(WebGridMessageType.Info, String.Empty, _

 "Publication has been cancelled with success")

 Else

 'update the business entity from the current user interface's values

 Me.UpdateBusinessEntity()

 Dim locked As Boolean = False

 Dim returnMessage As String = String.Empty

 Dim result As Boolean = Me.ApprovalAndPublish(locked)

 If locked Then

 Me.ShowMessage(WebGridMessageType.Info, String.Empty, _

 "Article has been saved and waits for approval.")

 Else

 Me.ShowMessage(WebGridMessageType.Info, String.Empty, _

 "Publication has been executed with success.")

 End If

 'refresh the business entity object from database

 Me.ArticleId = BusinessEntity.ID

 Me.EditBusinessEntity()

 End If

 Catch ex As Exception

 Me.ShowMessage(WebGridMessageType.Error, String.Empty, ex.Message)

 End Try

 End Sub

Step 7.7 – Testing the Approval and Category Support

 Use the Visual Studio 2008 IDE to compile the solution in DEBUG mode.

 Close the Visual Studio 2008 IDE and run the eModuleDeploy utility, which you will find in

the Tools folder of the PRIMAVERA WebCentral SDK.

 Indicate the complete filename of our module’s solution and start the deployment process.

 In appendix 19 [page 157] you will find the SQL script that is necessary to reflect the

changes in the database. Run this script over the WebCentral database using SQL Query

Analyzer.

 After the deployment process has completed, launch the Site Administrator application and

specify a new approval rule for the KnowledgeBase Articles. Specify ana.casaco as

responsible for approving the articles.

PRIMAVERA WebCentral SDK Manual

85

 Confirm the new Approval Rule and associate it to the KnowledgeBase Article category

Artigos Técnicos. From now on, all articles that were associated to this category will be

subject to being approved by ana.casaco.

 Launch your web browser and navigate to the KnowledgeBase administration component.

Create a new KnowledgeBase article and associate it to the category that is subject to

approval. Try publishing the article and you’ll see that the article has been sent to approval.

PRIMAVERA WebCentral SDK Manual

86

PRIMAVERA WebCentral SDK Manual

87

 Navigate to the list of published articles, just to check that the new article is not visible yet –

it should not appear as Ana Casaco still needs to approve it.

 Now, log in as ana.casaco and navigate the items that need her approval. You should see at

least the article that we created before. Click on the Approve link to finally publish the

article.

 If you now access the list of available KnowledgeBase Articles you should see the article that

we have created before.

Step 8 – Crystal Reports Integration
You’ll probably encounter situation where simple HTML output to the browser won’t be enough to

present dynamic, database driven content to the user. You might come to the point where you

need to create dynamic PDF files on the server and send the generated file to the client. The

salary receipt generation of the Human Resources Module of the WebCentral is a good example

of where this is already implemented.

In this chapter we’ll see how easy it is to generate dynamic PDF files using the WebCentral SDK.

We’ll add a new component to our already existing solution, which generates a PDF report with

all existing KnowledgeBase Articles. You can use the here presented code as base for you own

solution.

Step 8.1 – Creating a new component for reporting

Like already mentioned, we’re going to demonstrate the dynamic PDF creation by implementing a

new component for the KnowledgeBase module. You already know the step’s to do so by

completing the previous chapter’s, so here’s a good chance to check your knowledge.

 Open the project Primavera.KnowledgeBase.Modules and edit the file

ComponentsIDs.vb

PRIMAVERA WebCentral SDK Manual

88

 Add a new shared read-only property named KnowledgeBaseReport, which returns a newly

defined Guid.

 Public Shared ReadOnly Property KnowledgeBaseReport() As Guid

 Get

 Return New Guid("{4a89d1e4-17ec-416c-87d3-d3e97529229f}")

 End Get

 End Property

 Now that we’ve got the new components identifier, let’s publish the new component to the

WebCentral Platform and specify the component’s properties. Open the file Components.vb

and locate the method List. Add the following line the the already existing implementation.

 ElseIf ComponentType = ComponentType.Publishing Then

 objCol.Add(ComponentsIDs.KnowledgeBaseArticle, "Article Detail")

 objCol.Add(ComponentsIDs.KnowledgeBaseArticleList, "Article List")

 objCol.Add(ComponentsIDs.KnowledgeBaseReport, "Article Report")

 Still in the file Components.vb, locate the method Edit and insert the section which will

return essential information about the new component.

 ElseIf ComponentID.Equals(ComponentsIDs.KnowledgeBaseReport) Then

 objComp.Name = "Article Report"

 objComp.Description = "Component for creating article reports"

 objComp.ComponentClass = "ArticleReport"

 objComp.RequiresEnterprise = False

 objComp.IconIndex = 0

 objComp.BackgroundOpaque = True

 objComp.AllowsFrame = True

 objComp.ComponentSecurity = False

 We already have done everything to inform the WebCentral Platform about the new

component we’re going to provide. All that is left is creating the component and the Crystal

Report file itself. To do that, open the project Primavera.KnowledgeBase.WebUI and

insert a new Web Usercontrol to the folder Components. You should already be able to

guess the components name from the previous step. Call it ArticleReport.ascx.

 Open the new components HTML view and insert the following two lines. These two lines will

define a message box component, which will be used as error message, just in case

something went wrong during the PDF report creation.

<%@ Register TagPrefix="WebC" TagName="WebGridMessage"

Src="../Primavera.Platform/WebGridMessage.ascx" %>

<WebC:webgridmessage id="messageBox" runat="server"

visible="False"></WebC:webgridmessage>

Now we come to the real interesting part – the code that actually will pick up an already existing

Crystal Report file and generate a PDF which is than sent to the client’s browser. You actually can

use this code as snippet and copy and paste it in your own project. You only should take care

about the database connection parameters, the report’s filename as well as the selection

formulas you need.

 Change the user controls base class to WebComponentBase.

PRIMAVERA WebCentral SDK Manual

89

 Partial Public Class ArticleReport

 Inherits Primavera.Platform.WebUI.WebComponentBase

 Open the new component’s code behind file and insert the following code.

 '<summary>

 ' The following method is responsible for correctly creating the

 ' report in PDF format. The function will return the complete

 ' filename for the report on success.

 '</summary>

 Private Function PrintReport() As String

 Dim reportArticles As Primavera.Platform.Services.Entities.CrystalReport = _

New Primavera.Platform.Services.Entities.CrystalReport

 Dim reportFileName As String =

Server.MapPath("Modules/Primavera.KnowledgeBase/Report.rpt")

 reportArticles.Location = reportFileName

 reportArticles.Copies = 1

 reportArticles.Destination =

Primavera.Platform.Services.Entities.ReportDestination.Preview

 reportArticles.Format = Primavera.Platform.Services.Entities.ReportFormat.PDF

 reportArticles.Title = "Knowledge Base Articles"

 reportArticles.LogonInfo.Login = "sa"

 reportArticles.LogonInfo.Password = "sasa"

 reportArticles.LogonInfo.Server = "WSTMSCHUETZ\SQLEXPRESS"

 reportArticles.LogonInfo.Database = "EPRIMAVERA"

 reportArticles.SelectionFormula = "{KNB_ArticleCultures.CultureID}=""{" _

 + WebContext.User.Culture.CultureID.ToString() + "}"""

 Dim engineCtx As Platform.Engine.Entities.EngineContext =

Me.WebContext.User.EngineContext

 Dim serviceProxy As Primavera.Platform.Services.Business.CrystalReports = _

New Primavera.Platform.Services.Business.CrystalReports

 Dim resultFilename As String = _

serviceProxy.ExportReport(engineCtx, reportArticles, Guid.NewGuid.GetHashCode())

 If resultFilename Is Nothing Then

 messageBox.Visible = True

 messageBox.MessageType = Platform.WebUI.Controls.WebGridMessageType.Error

 messageBox.MessageTitle = "Primavera.KnowledgeBaseArticleReport"

 messageBox.MessageText = _

String.Format("An unexpected error occurred while creating the requested report ({0})",

_

 reportArticles.Location)

 messageBox.Refresh()

 Return String.Empty

 End If

PRIMAVERA WebCentral SDK Manual

90

 Return Me.WebContext.Portal.PortalUrl + "/" + resultFilename

 End Function 'PrintReport

 Please make sure that you substitute the parameters like the SQL logon info with the correct

values. It surely is good practise to place these configuration settings into secure and easy

maintainable configuration files, like for example the web.config file. You can find valuable

information about this in the Microsoft Developer Network.

 As you can see, this method will return the absolute URL path of the generated PDF report.

All we need to do now is call this method in the Page_Load handler, and redirect the HTTP

response to the file generated. Locate the Page_Load method and insert the following lines

of code:

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

 Dim reportFilename As String = PrintReport()

 If Not reportFilename.Equals(String.Empty) Then

 Response.Redirect(reportFilename)

 Response.End()

 End If

 End Sub

We’ve now added a new component to our module, which dynamically creates a PDF report

having all our KnowledgeBase articles in the currently active culture, and sents this report to the

client’s browser. Your code now should be compilable and you should be able to deploy the

module to the WebCentral Platform.

What we still need to do, is create the Crystal Report Template file and store it at the place

where the code expects it to be (C:\inetpub\wwwroot\WebCentral\Modules\Knowledge

Base\Report.rpt). We’ll discuss this in the next step.

Step 8.2 – Creating the Crystal Report document

The WebCentral Platform uses componens from Crystal Reports 2008 to dynamically create PDF

reports. For that reason, the Crystal Reports 2008 designer should be your tool of choice to

create the report template files. However, you can use any other version, as long as the created

file is compatible with the expected format.

To create the report template file, open the designer and connect to the database that is used by

the PRIMAVERA WebCentral Platform. You can use the OLE DB (ADO) connection provider for

SQL Server to create a new database connection. Select the tables KNB_ArticleCultures and

KNB_Articles for being used in the report.

PRIMAVERA WebCentral SDK Manual

91

In the reports design mode, drag and drop fields Title, Author, Summary and Body to the detail
section of the report. Check the preview pane for how the compiled will look like.

PRIMAVERA WebCentral SDK Manual

92

If you have completed design, store the file to the directorty where the component expects it to
be. In our example, it expects it to be in the folder

C:\inetpub\wwwroot\WebCentral\Modules\Knowledge Base\

and its name should be report.rpt.

Step 8.3 – Testing the Reporting component

 If you haven’t already done it, use the Visual Studio 2008 IDE to compile the solution in

DEBUG mode.

 Close the Visual Studio 2008 IDE and deploy the solution using the eModuleDeploy utility.

 Use the Site Administrator utility to create a new page Article Report in the portal that you

previously used to test the KnowledgeBase module.

 Place the new Article Report in this new page.

 Check-in the changes and publish the portal.

 Navigate to the page that contains the Article Report component. The component should

create the dynamic PDF document and render it to your browser.

PRIMAVERA WebCentral SDK Manual

93

PRIMAVERA ERP Integration
The development of models that integrate the PRIMAVERA ERP is just like developing any other

type of module. However you will need to take at least two aspects in consideration.

The access to the PRIMAVERA ERP database

You never should take for granted that the PRIMAVERA ERP database lives on the same database

server than the database for PRIMAVERA WebCentral. The PRIMAVERA ERP database location is

defined while initializing the PRIMAVERA ERP instance using the PRIMAVERA ERP Administration

tool. The PRIMAVERA WebCentral module should always use PRIMAVERA ERP platform engine to

initialize the session and open the required enterprise database.

Usage of ERP Web Business Services to access PRIMAVERA ERP engine

Since v8.0 SR1 WebCentral, a new way to communicate with PRIMAVERA ERP is available. This is

and will be the preferred method from this version on. It is based on web services, which are

created after running the Erp Web Business Services setup available on the WebCentral DVD.

This new layer allows for 64-bit project configurations/compilations and greater compatibility

between ERP versions and WebCentral as the Webservices are created at runtime using current

interops working on the machine. This new method removes most likely conflicts between the

WebCentral components and the existing ERP version.

Depeding on the estimated workload, network configuration and final client dimension it is

possible to configure one machine for the ERP Web Services and another for Webcentral or use

the same machine for both tasks, this allows for a flexible system configuration and a better

resource management according to client needs.

It is also quite easier to develop components which use ERP data, than in previous

WebCentral/Enterprise Portals versions.

Please note that this is available from ERP version 7.55 SR2 or newer.

Overview
The PRIMAVERA WebCentral Platform provides one module which will support you while

developing customized modules that integrate the PRIMAVERA ERP.

First off, if there are any existing references to Interops in your solution they must be removed.

Next, add four new references to your project, they are: “Primavera.ERPOnline.Bso.Proxy.dll”

and “Primavera.ERPOnline.Services.Proxy.dll”.These dll’s can be found after installing the Erp

Web Business Services under its “\ProxyClient” folder (ex:

“C:\inetpub\wwwroot\ERPWebBusinessServices\ProxyClient”). The remaing two references are

“Primavera.ERP.Entities” and “Primavera.ERP.Business”, both can be found in the WebCentral

SDK Folder.

Creating a new Web component for ERP Data
Access

Again we can use what we have already learned and create a new component for showing ERP

Data. This time we are going to use the base solution provided by Application Builder.

 Create a new Solution in the Application builder
 Edit the created solution and publish the “programming logic”

PRIMAVERA WebCentral SDK Manual

94

 Open the generated solution in Visual Studio.

We are now going to create a new component named ERPSDK. After opening the solution follow

these steps.

 Open the project Entities in the solution and edit the file StaticIDsBase.vb

 Add a new value to the ComponentsEnum Enum.

 Public Enum ComponentsEnum

 BizEntityViewer

 BizModelExplorer

 TreeModelExplorer

 ERPSDK

 End Enum

 In the same file find property named components and add a new item with a new guid.

Public Shared ReadOnly Property Components(ByVal Item As ComponentsEnum) As Guid

 Get

 Select Case Item

 Case ComponentsEnum.BizEntityViewer

 Return New Guid("{A7A37221-447E-4654-89B0-E79F2E31F182}")

 Case ComponentsEnum.BizModelExplorer

 Return New Guid("{A7A37221-447E-4654-89B0-E79F2E31F183}")

 Case ComponentsEnum.TreeModelExplorer

 Return New Guid("{A7A37221-447E-4654-89B0-E79F2E31F184}")

 Case ComponentsEnum.ERPSDK

 Return New Guid("{A7A37221-447E-4654-89B0-E79F2E31F185}")

 End Select

 End Get

 End Property

 Now that we’ve got the new components identifier, let’s publish the new component to the

WebCentral Platform and specify the component’s properties. Open the file Components.vb

under the Modules project and locate the method List. Add the following line the the already

existing implementation.

 ElseIf ComponentType = ComponentType.Publishing Then

 Components.Add(Entities.Proxy.StaticIDs.Components(Entities.StaticIDs.ComponentsEn

um.BizEntityViewer), ResMan.GetString("RES_Components_BizEntityViewer"))

 Components.Add(Entities.Proxy.StaticIDs.Components(Entities.StaticIDs.ComponentsEn

um.BizModelExplorer), ResMan.GetString("RES_Components_BizModelExplorer"))

 Components.Add(Entities.Proxy.StaticIDs.Components(Entities.StaticIDs.ComponentsEn

um.TreeModelExplorer), ResMan.GetString("RES_Components_TreeModelExplorer"))

 Components.Add(Entities.Proxy.StaticIDs.Components(Entities.StaticIDs.ComponentsEn

um.ERPSDK), "ERPSDK Component")

 Still in the file Components.vb, locate the method Edit and insert the section which will

return essential information about the new component.

 ElseIf ComponentID.Equals(ComponentsIDs.KnowledgeBaseReport) Then

 objComp.Name = "ERPSDK Comp"

 objComp.Description = "ERPSDK Component"

PRIMAVERA WebCentral SDK Manual

95

 objComp.ComponentClass = "ERPSDKComponent"

 objComp.RequiresEnterprise = True 'This options trigger the show of the

combobox which allows for Enterprise Selection

 objComp.IconIndex = 0

 objComp.BackgroundOpaque = True

 objComp.AllowsFrame = True

 objComp.ComponentSecurity = False

 Now all that is left is creating the component file itself. To do that, open the WebUI project

and insert a new Web Usercontrol to the folder Components. Call it

ERPSDKComponent.ascx. The component class must match the ComponentClass property

inserted in the previous step. It is case sensitive.

 Open the new components HTML view and insert the following two lines. These two lines will

define a message box component, which will be used as error message, just in case

something went wrong during the PDF report creation.

<%@ Register TagPrefix="WebC" TagName="WebGridMessage"

Src="../Primavera.Platform/WebGridMessage.ascx" %>

<WebC:webgridmessage id="messageBox" runat="server"

visible="False"></WebC:webgridmessage>

<asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>

<asp:GridView ID="GridView1" runat="server"></asp:GridView>

Now let’s place some data in the inserted controls.

 Change the user controls base class to WebComponentBase.

 Partial Public Class ArticleReport

 Inherits Primavera.Platform.WebUI.WebComponentBase

 The following code segment shows how to invoke the PRIMAVERA ERP engine and bind the

list of available items for the selected enterprise to a data grid control as well as to show the
current user name for employee with code "F001".

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

 Dim erpContext As Primavera.ERP.Entities.ERPContext = Nothing

 Dim func As Primavera.ERPOnline.Bso.RhpBEFuncionario = Nothing

 Dim contactos As Primavera.ERPOnline.Bso.GcpBEContactos = Nothing

 Try

 erpContext =

Primavera.ERP.Business.Proxy.OpenEnterprise(WebContext.Instance.Parameters.ERPPlatformV

ersion, WebContext.User.EngineContext.EnterpriseCode, WebContext.User.ERPAccountUser,

WebContext.User.ERPAccountPassword, WebContext.Instance.Parameters.ERPInstance)

 func = erpContext.BSO.RecursosHumanos.Funcionarios.Edita("F001")

Label1.Text = func.Nome

 artigos = erpContext.BSO.Comercial.Artigos.LstArtigos

 GridView1.DataSource = artigos.DataSource.Tables

 GridView1.AutoGenerateColumns = True

PRIMAVERA WebCentral SDK Manual

96

 GridView1.DataBind()

 Catch ex As Exception

 messageBox.Visible = True

 messageBox.MessageType =

Primavera.Platform.WebUI.Controls.WebGridMessageType.Error

 messageBox.MessageTitle = "Error"

 messageBox.MessageText = "An error occurred: " + ex.Message + vbNewLine +

ex.StackTrace

 messageBox.Refresh()

 Finally

 func = Nothing

 contactos = Nothing

 Primavera.ERP.Business.Proxy.CloseEnterprise(erpContext)

 End Try

 End Sub

Please note the following: a good practice it is importante to guarantee when the closeEnterprise

Method is called. Not doing so may lead to deadlocks and/or memory leaks.

Windows Components
Since all visualization components should always be written in web based components, probably

you will never need to invoke the PRIMAVERA ERP engine in Windows Forms based components.

From version 7 on, Windows Forms based dialogs are only used to configure components in the

Site Administration utility. However you might need to access the PRIMAVERA ERP engine from a

Windows Forms based component. Here’s how it’s done, presuming that you already

implemented the remoting layer.

1. Create a Proxy from the Remoting assembly, using the form’s member CreateRemoteProxy.

2. Obtain an ERPContext, if not already obtained, using the proxy’s OpenEnterprise method.

3. Call the appropriate methods you need.

4. Release the ERPContext calling the proxy’s CloseEnterprise method.

PRIMAVERA WebCentral SDK Manual

97

Frequently Asked Questions

What does the deployment process do?
The PRIMAVERA WebCentral SDK provides a utility that hides the process of deploying a

customized module from you. However, you might need to deploy your module by hand, that is,

for example, if you are not developing at the production server – there will come the time you’ll

need to deploy your module to the live server, which normally is not possible using the

eModuleDeploy application.

So what does this small tool does? What should you do to deploy your module by hand?

1) Prepare your module files to be deployed

Compile your module in RELEASE mode. Create a new folder on your local or pen drive and

copy all files that need to be deployed to this folder. At least you should copy all assemblies,

web pages and web user controls (*.dll, *.ascx, *.aspx) to this folder. Depending on your

code, you also might need other files.

2) Stop the Internet Information Services

To avoid that files get locked due to ongoing processes, avoid that requests to the web

server are made – stop the Website in the Internet Information Services Administration

Console.

3) Copy all assemblies to the WebCentral Installation Directory

Copy all files that you prepared to the installation directory. This directory depends on the

name of your solution, for example, you need to copy these files to the directory

C:\inetpub\wwwroot\WebCentral\Modules\Primavera.KnowledgeBase\

if your solution’s is name is Primavera.KnowledgeBase.

4) Copy the WebUI assembly to the bin folder

All of the system’s module’s WebUI assemblies need to be located in the \bin folder below

the WebCentral’s installation directory. Move the WebUI assembly from your modules folder

to the bin directory.

5) Register the assemblies in the WebCentral Database

Use the tool eModulesUpdate, located in the \Tools directory, to update the register of

components in the WebCentral Database. This step always should be done, but explicitly

needs to be done whenever the version of a module changes.

6) Start the Internet Information Services

At last, do not forget to start the website again.

How can I debug my module?
Debugging is a normal process during development and helps to find problems you never might

find without. Customized modules are no single web –or windows application that you could

debug easily, so you should ask, how can I debug my module?

The answer is: Depends. It depends on what kind of code you are interested. Code that is

executed on the client, or code that is executed on the server? Remember, all Windows Forms

dialogs are executed in the client’s machine!

PRIMAVERA WebCentral SDK Manual

98

Most of the time you might need to debug ASP.NET code in your WebUI, Business or Data layer.

Just make sure that you compiled and deployed your module in DEBUG mode. Than, before you

access any of you components, use the Visual Studio IDE to attach the debugger to the aspnet

process.

If you need to debug client code, such as in Windows Forms Dialogs (properybag editors), you

simply the Visual Studio Debugger to the host, which normally is the Site Administration

application or the currently used browser (Internet Explorer).

Once you have attached the Visual Studio Debugger to the right process, all debugging

functionality like breakpoints, watch and immediate window are available.

How do I change the portal’s template?
PRIMAVERA WebCentral provides you with a feature to change the visual experience using web

templates. A web template is a set of Cascading Style Sheets (CSS) and images stored in the

WebTemplates folder of the PRIMAVERA WebCentral installation directory. The standard setup

already comes along with some web templates, which you can use for your portals. To change

the web template used by a portal, simply launch the Site Administration utility and open the

Portal Designer for the respective portal. Open up the portals properties and you will be able to

choose one of the existing templates for your portal:

PRIMAVERA WebCentral SDK Manual

99

The portal will appear with a new look after checking and publishing in the modified portals

properties.

How do I create a new layout template?
If you feel comfortable with CSS there’s nothing that could keep you from customizing one of the

available web templates to your own needs. Just take one of the existing templates, copy it to a

new web template directory and start modifying the CSS as you wish. The following chapter

explains the various styles and where they are used.

Portal Header

The portal header is made of four tables, each one having a different style. These four tables

separate different kind of information and make it possible to adjust the visual representation:

 Top (name of the portal and login)

 Corporate Identity Banner

 Navigation (drop-down menu, date and culture)

 Breadcrumb (Navigation Path)

The corporate identity banner can be chosen by the site administrator during the portal’s design

process, so there’s no need for a manual intervention in the CSS file for changing the banner.

However the banner should not exceed a maximum height of 80 pixels.

PRIMAVERA WebCentral SDK Manual

100

Portal Footer

The portal footer is made of two tables, where the upper one inherits the style from the portals

header and the bottom table is made up of following styles:

Text

To distinguish between various types of information, and their respective importance to the user,

several styles have been defined for being used:

 Title

 Subtitle

 Headline Title

 Normal text

Links

There exist four styles for styling hyperlinks:

 .linkTopo, mainly used for the portal header)

 .linkMenu, mainly used for the portals menu

 .linkTxt, mainly used in other text and in headline section

 .linkDest, mainly used in lists with headlines

PRIMAVERA WebCentral SDK Manual

101

Separators

One way to group and prioritize information is to encapsulate it into a separator. One table, with

three columns are needed to build this feature.

Headline sections

A headline sections are composed of 3 tables (title, information and bottom).

The rule that defines how the various parts fit together is the selected colour. This way, the

colour chosen for the headline section also defines the colour for the horizontal and vertical

separation lines, the arrow indicator for the links as well as for the buttons, if this applies.

PRIMAVERA WebCentral already comes along with a great variety of headline section styles,

which also allow to be combined, and therefore provide a wide range of possibilities.

Attention:

All three tables used to create a highlight box do have three columns. Each of these three

columns has style identifier associated, which starts with .cel and ends with a key for which

column the style applied (E=left, C=center, D=right) – example .celDest04C is a style used for

the center column of highlight box style 04.

PRIMAVERA WebCentral SDK Manual

102

PRIMAVERA WebCentral SDK Manual

103

PRIMAVERA WebCentral SDK Manual

104

Search Sections

The following model will illustrate the use of styles in the search section.

Headlines

The following model will illustrate the use of styles in the headlines section.

Portal Login

The login interface is composed of four tables located in a <DIV> element at the right corner 24

pixel below the top. The first three tables are attributed to the boxLogin style where as the

bottom table is divided into two columns. The left column contains a rounded corner (loginE.gif)

and the right column is attributed to the celFundoLogin style.

PRIMAVERA WebCentral SDK Manual

105

Portal Login Page

The following model will illustrate the use of styles in the login page.

The following image illustrates the styles used in a login page showing a warning.

Link List

The following image illustrates the usage of styles in the link list component. The style used can

be modified in the components properties.

PRIMAVERA WebCentral SDK Manual

106

Menu

The PRIMAVERA WebCentral Platform provides two types of menu visualization’s. The flat menu

style and the rounded menu style – the portals menu style can be selected in the portals

properties dialog. The following two images illustrate the usage of styles in the two menu types.

Flat Menu Style

Rounded Menu Style

PRIMAVERA WebCentral SDK Manual

107

Content Lists

The following image will illustrate the usage of styles in the content list controls.

Content Options

The following image will illustrate the styles used in the content options pane.

Content Headlines

Placed in one of the portal’s side columns, this type of component can suggest the user

important headlines without the need to use search. The following image explains the style usage

of this component.

PRIMAVERA WebCentral SDK Manual

108

Forms

The following image illustrates the usage of styles in the form’s component:

Grids

The following two images illustrate the usage of styles in the grid views.

PRIMAVERA WebCentral SDK Manual

109

Sections

The following two images illustrate the usage of styles in the information sections.

PRIMAVERA WebCentral SDK Manual

110

Appendix

Appendix 1 – Business Entity Article

Imports Primavera.Platform.Engine.Entities

<Serializable(), BusinessEntityAttribute("KNB_Articles", "CE1CA692-1864-4806-ACC5-3E2355590B15")> _

Public Class Article

 Inherits BusinessEntityBase

#Region "Private Variables"

 Private m_date As DateTime

 Private m_author As String

 Private m_title As String

 Private m_summary As String

 Private m_body As String

 Private m_image As String

#End Region

#Region "Public Properties"

 <BusinessEntityField("Date")> _

 Public Property [Date]() As DateTime

 Get

 Return m_date

 End Get

 Set(ByVal Value As DateTime)

 m_date = Value

 End Set

 End Property

 <BusinessEntityField("Author")> _

 Public Property Author() As String

 Get

 Return m_author

 End Get

 Set(ByVal Value As String)

 m_author = Value

 End Set

 End Property

 <BusinessEntityField("Title")> _

 Public Property Title() As String

 Get

 Return m_title

 End Get

 Set(ByVal Value As String)

 m_title = Value

 End Set

 End Property

 <BusinessEntityField("Summary")> _

PRIMAVERA WebCentral SDK Manual

111

 Public Property Summary() As String

 Get

 Return m_summary

 End Get

 Set(ByVal Value As String)

 m_summary = Value

 End Set

 End Property

 <BusinessEntityField("Body")> _

 Public Property Body() As String

 Get

 Return m_body

 End Get

 Set(ByVal Value As String)

 m_body = Value

 End Set

 End Property

 <BusinessEntityField("Image")> _

 Public Property Image() As String

 Get

 Return m_image

 End Get

 Set(ByVal Value As String)

 m_image = Value

 End Set

 End Property

#End Region

End Class

PRIMAVERA WebCentral SDK Manual

112

Appendix 2 – Business Service

Imports Primavera.Platform

Imports Primavera.Platform.Engine.Entities

Imports Primavera.Platform.Engine.Business

<BusinessServiceAttribute(GetType(Data.Articles))> _

Public Class Articles

 Inherits BusinessServiceBase

#Region "Editing"

 Public Function Edit(ByVal Context As EngineContext, ByVal Id As Guid) As Entities.Article

 Return CType(BaseEdit(Context, Id), Entities.Article)

 End Function

 Public Function EditField(ByVal Context As EngineContext, ByVal Id As Guid, ByVal Field As

String) As Object

 Return BaseEditField(Context, Id, Field)

 End Function

 Public Function EditFields(ByVal Context As EngineContext, ByVal Id As Guid, ByVal ParamArray

Fields() As String) As Fields

 Return BaseEditFields(Context, Id, Fields)

 End Function

#End Region

#Region "Updating"

 Public Sub Update(ByVal Context As EngineContext, ByVal Article As Entities.Article)

 BaseUpdate(Context, CType(Article, BusinessEntityBase))

 End Sub

 Public Sub UpdateField(ByVal Context As EngineContext, ByVal Id As Guid, ByVal Field As String,

ByVal Value As Object)

 BaseUpdateField(Context, Id, Field, Value)

 End Sub

 Public Sub UpdateFields(ByVal Context As EngineContext, ByVal Id As Guid, ByRef Fields As

Fields)

 BaseUpdateFields(Context, Id, Fields)

 End Sub

#End Region

#Region "Existing"

 Public Function Exists(ByVal Context As EngineContext, ByVal Id As Guid) As Boolean

 Return BaseExists(Context, Id)

 End Function

#End Region

#Region "Removing"

PRIMAVERA WebCentral SDK Manual

113

 Public Sub Remove(ByVal Context As EngineContext, ByVal Id As Guid)

 BaseRemove(Context, Id)

 End Sub

#End Region

#Region "Locking"

 Public Sub LockUI(ByVal Context As EngineContext, ByVal Id As Guid)

 BaseLockUI(Context, Id)

 End Sub

 Public Sub UnlockUI(ByVal Context As EngineContext, ByVal Id As Guid)

 BaseUnlockUI(Context, Id)

 End Sub

#End Region

#Region "Validations"

 Public Overloads Function ValidateUpdate(ByVal Context As EngineContext, ByVal Article As

Entities.Article, ByRef OutMessage As String, Optional ByVal FieldsToValidate As String = "*") As

Boolean

 Return BaseValidateUpdate(Context, CType(Article, BusinessEntityBase), OutMessage,

FieldsToValidate)

 End Function

 Public Overloads Function ValidateRemove(ByVal Context As EngineContext, ByVal Id As Guid,

ByRef OutMessage As String) As Boolean

 Return BaseValidateRemove(Context, Id, OutMessage)

 End Function

#End Region

#Region "Cloning"

 Protected Overrides Function BaseClone(ByVal Context As EngineContext, ByVal Id As Guid) As

Guid

INICIO:

 Try

 Context.BeginTransaction()

 Dim cloneId As Guid = MyBase.BaseClone(Context, Id)

 'TODO: clonar classes de detalhe que proventura existam.

 Context.CommitTransaction()

 Return cloneId

 Catch ex As Exception

 Context.RollBackTransaction()

 If Context.VerifyLockException(ex) Then GoTo INICIO

 Throw ex

 End Try

 End Function

PRIMAVERA WebCentral SDK Manual

114

 Public Function Clone(ByVal Context As EngineContext, ByVal Id As Guid) As Guid

 Return BaseClone(Context, Id)

 End Function

#End Region

#Region "Security"

 Protected Overloads Overrides Function BaseVerifyEditPermission(ByVal Context As EngineContext,

ByVal ID As Guid, ByRef OutMessage As String) As Boolean

 Return MyBase.BaseVerifyEditPermission(Context, ID, OutMessage)

 End Function

 Protected Overloads Overrides Function BaseVerifyUpdatePermission(ByVal Context As

EngineContext, ByVal Entity As BusinessEntityBase, ByRef OutMessage As String, Optional ByVal

FieldsToValidate As String = "*") As Boolean

 Return MyBase.BaseVerifyUpdatePermission(Context, Entity, OutMessage, FieldsToValidate)

 End Function

 Protected Overrides Function BaseVerifyNewPermission(ByVal Context As EngineContext, ByVal

Entity As BusinessEntityBase, ByRef OutMessage As String) As Boolean

 Return MyBase.BaseVerifyNewPermission(Context, Entity, OutMessage)

 End Function

 Protected Overloads Overrides Function BaseVerifyRemovePermission(ByVal Context As

EngineContext, ByVal ID As Guid, ByRef OutMessage As String) As Boolean

 Return MyBase.BaseVerifyRemovePermission(Context, ID, OutMessage)

 End Function

 Public Overloads Function VerifyEditPermission(ByVal Context As EngineContext, ByVal ID As

Guid, ByRef OutMessage As String) As Boolean

 Return BaseVerifyEditPermission(Context, ID, OutMessage)

 End Function

 Public Overloads Function VerifyNewPermission(ByVal Context As EngineContext, ByVal Article As

Entities.Article, ByRef OutMessage As String) As Boolean

 Return BaseVerifyNewPermission(Context, CType(Article, BusinessEntityBase), OutMessage)

 End Function

 Public Overloads Function VerifyRemovePermission(ByVal Context As EngineContext, ByVal ID As

Guid, ByVal OutMessage As String) As Boolean

 Return BaseVerifyRemovePermission(Context, ID, OutMessage)

 End Function

 Public Overloads Function VerifyUpdatePermission(ByVal Context As EngineContext, ByVal Article

As Entities.Article, ByVal OutMessage As String) As Boolean

 Return BaseVerifyUpdatePermission(Context, CType(Article, BusinessEntityBase), OutMessage)

 End Function

#End Region

End Class

PRIMAVERA WebCentral SDK Manual

115

Appendix 3 – Article Web User Control (HTML)

<%@ Control Language="vb" AutoEventWireup="false" Codebehind="Article.ascx.vb"

Inherits="Primavera.KnowledgeBase.WebUI.Article"

TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>

<table>

 <tr>

 <td rowspan="2"><asp:Literal id="litImage" runat="server"></asp:Literal></td>

 <td><asp:Label id="lblTitle" runat="server"

CssClass="Title"></asp:Label></td>

 </tr>

 <tr>

 <td><asp:Label id="lblSummary" runat="server"

CssClass="SubTitle"></asp:Label></td>

 </tr>

 <tr>

 <td colspan="2"><asp:Label id="lblBody" runat="server"></asp:Label></td>

 </tr>

 <tr>

 <td colspan="2"><asp:Label id="lblAuthor"

runat="server"></asp:Label></td>

 </tr>

</table>

PRIMAVERA WebCentral SDK Manual

116

Appendix 4 – Article Web User Control (Code behind)

Public Class Article

 Inherits Primavera.Platform.WebUI.WebComponentBase

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.

 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 Protected WithEvents litImage As System.Web.UI.WebControls.Literal

 Protected WithEvents lblTitle As System.Web.UI.WebControls.Label

 Protected WithEvents lblSummary As System.Web.UI.WebControls.Label

 Protected WithEvents lblBody As System.Web.UI.WebControls.Label

 Protected WithEvents lblAuthor As System.Web.UI.WebControls.Label

 'NOTE: The following placeholder declaration is required by the Web Form Designer.

 'Do not delete or move it.

 Private designerPlaceholderDeclaration As System.Object

 Private Sub Page_Init(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Init

 'CODEGEN: This method call is required by the Web Form Designer

 'Do not modify it using the code editor.

 InitializeComponent()

 End Sub

#End Region

 Private m_article As Entities.Article

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 If Not Request("ArticleID") Is Nothing Then

 Dim ArticleID As Guid = New Guid(Request("ArticleID"))

 LoadArticle(ArticleID)

 ShowArticle()

 Else

 Me.Visible = False

 End If

 End Sub

 Private Sub LoadArticle(ByVal articleId As Guid)

 m_article = Business.Proxy.Articles.Edit(WebContext.User.EngineContext,

articleId)

 End Sub

PRIMAVERA WebCentral SDK Manual

117

 Private Sub ShowArticle()

 With m_article

 litImage.Text = .Image

 lblAuthor.Text = .Author

 lblTitle.Text = .Title

 lblSummary.Text = .Summary

 lblBody.Text = .Body

 End With

 End Sub

End Class

PRIMAVERA WebCentral SDK Manual

118

Appendix 5 – Article List Web User Control (HTML)

<%@ Control Language="vb" AutoEventWireup="false" Codebehind="ArticleList.ascx.vb"

Inherits="Primavera.KnowledgeBase.WebUI.ArticleList"

TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>

<asp:DataList id="lstArtigos" runat="server">

<ItemTemplate>

<table>

<tr >

<td><%# DataBinder.Eval(Container.DataItem, "Image")%></td>

 <td>

 <table>

 <tr>

<td><a href = <%# GetDetailPageUrl(DataBinder.Eval(Container.DataItem, "ID"))%>

class="LinkText">

<%# DataBinder.Eval(Container.DataItem, "Title")%></td>

 </tr>

 <tr>

 <td><%# DataBinder.Eval(Container.DataItem, "Author")%></td>

 </tr>

 <tr>

 <td><%# DataBinder.Eval(Container.DataItem, "Summary")%></td>

 </tr>

 <tr>

 <td><%# DataBinder.Eval(Container.DataItem, "Date")%></td>

 </tr>

 </table>

 </td>

</tr>

</table>

</ItemTemplate>

</asp:DataList>

PRIMAVERA WebCentral SDK Manual

119

Appendix 6 – Article List Web User Control (Code behind)

Public Class ArticleList

 Inherits Primavera.Platform.WebUI.WebComponentBase

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.

 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 End Sub

 'NOTE: The following placeholder declaration is required by the Web Form Designer.

 'Do not delete or move it.

 Private designerPlaceholderDeclaration As System.Object

 Private Sub Page_Init(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Init

 'CODEGEN: This method call is required by the Web Form Designer

 'Do not modify it using the code editor.

 InitializeComponent()

 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 LoadArticles()

 End Sub

 Private Sub LoadArticles()

 Dim strSql As String = "SELECT * FROM KNB_Articles ORDER BY [date]"

 Dim tblArtigos As DataTable =

Primavera.Platform.Engine.Business.List.List(WebContext.User.EngineContext, strSql)

 lstArtigos.DataSource = tblArtigos

 lstArtigos.DataBind()

 End Sub

 Public Function GetDetailPageUrl(ByVal articleId As Guid) As String

 Dim guidCompArticleDetail As Guid = New Guid("B6B669F2-35B2-43a1-A03D-

7325EEB2B082")

 Return String.Format("ComponentRender.aspx?ComponentID={0}&ArticleID={1}",

guidCompArticleDetail, articleId)

 End Function

End Class

PRIMAVERA WebCentral SDK Manual

120

Appendix 7 – SQL Script for the KnowledgeBase

if exists (select * from dbo.sysobjects

 where id = object_id(N'[dbo].[KNB_Articles]') and OBJECTPROPERTY(id,

N'IsUserTable') = 1)

drop table [dbo].[KNB_Articles]

GO

CREATE TABLE [dbo].[KNB_Articles] (

 [ID] [uniqueidentifier] NOT NULL,

 [Date] [datetime] NULL,

 [Author] [nvarchar] (100) NULL,

 [Title] [nvarchar] (250) NULL,

 [Summary] [nvarchar] (500),

 [Body] [nvarchar] (500) NULL,

 [Image] [nvarchar] (250) NULL

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[KNB_Articles] WITH NOCHECK ADD

 CONSTRAINT [PK_KNB_Articles] PRIMARY KEY CLUSTERED

 (

 [ID]

) ON [PRIMARY]

GO

INSERT INTO [dbo].[KNB_Articles] (ID,[Date],Author,Title,Summary,Body,[Image])

 VALUES (NEWID(),GETDATE(),'Jim Button','Desenvolvendo um Módulo','This article

describes ...',

 'Para desenvolver um Módulo WEBC é imprescindivel começar por uma leitura

adequada...',

 '')

INSERT INTO [dbo].[KNB_Articles] (ID,[Date],Author,Title,Summary,Body,[Image])

 VALUES (NEWID(),GETDATE(),'Laura Jones','Integração','Discutindo a integração

...',

 'Este assunto é susceptivel de levantar alguma polemica. Apesar de existir

bastante documentação sobre este tema ...',

'')

PRIMAVERA WebCentral SDK Manual

121

Appendix 8 – Article Administration Details Control (HTML)

<%@ Control Language="vb" AutoEventWireup="false"

CodeBehind="ArticleAdminDetail.ascx.vb"

Inherits="Primavera.KnowledgeBase.WebUI.ArticleAdminDetail" %>

<%@ Register TagPrefix="WebC" Namespace="Infragistics.WebUI.WebSchedule"

Assembly="Infragistics2.WebUI.WebDateChooser.v6.2, Version=6.2.20062.34,

Culture=neutral, PublicKeyToken=7dd5c3163f2cd0cb" %>

<%@ Register TagPrefix="WebC" TagName="WebImageSelection"

Src="../Primavera.Platform/WebImageSelection.ascx" %>

<%@ Register TagPrefix="WebC" TagName="WebImageSelectionPopUpButton"

Src="../Primavera.Platform/WebImageSelectionPopUpButton.ascx" %>

<!--

 The following script will include the necessary java script to handle a web based

 HTML editor, which we'll use in this example for composing the article

-->

<SCRIPT language="javascript">

<!--

 _editor_url = "<%=GetCurrentPortalURL(Request)%>";

 _editor_template = "<%="WebTemplates/" & WebContext.Portal.Template & "/Styles/" &

System.Enum.GetName(GetType(Primavera.Platform.Security.Entities.PortalConfig.FontStyle

s), WebContext.Portal.Font) & ".css"%>";

 var win_ie_ver = parseFloat(navigator.appVersion.split("MSIE")[1]);

 if (navigator.userAgent.indexOf('Mac') >= 0) { win_ie_ver = 0; }

 if (navigator.userAgent.indexOf('Windows CE') >= 0) { win_ie_ver = 0; }

 if (navigator.userAgent.indexOf('Opera') >= 0) { win_ie_ver = 0; }

 if (win_ie_ver >= 5.5) {

 document.write('<scr' + 'ipt src="' +_editor_url+

'/SystemFiles/Scripts/editor_contentmanagement.js"');

 document.write(' language="Javascript1.2"></scr' + 'ipt>');

 } else { document.write('<scr'+'ipt>function editor_generate() { return false;

}</scr'+'ipt>'); }

// -->

</SCRIPT>

<asp:Panel ID="panelArticleDetails" runat="server" Visible="True">

 <!--

 The panel contains all controls which are necessary to insert/edit a

new/existing

 item; it will demonstrate some special controls, such as the Infragistics

DateTime

 picker as well as the HTML editor, for composing the article body. This panel

will

 be hidden whenever the user clicked the image button. To select an image for

the

 message this panel will be hidden and the image selection panel (see below)

will be

 shown.

 -->

PRIMAVERA WebCentral SDK Manual

122

 <table>

 <tr>

 <!-- Articles Publishing Date (Infragistics DateTime Picker) -->

 <td class="width_s alignRight">Date</td>

 <td class="width_s">

 <WebC:webdatechooser id="txtDate" runat="server"></WebC:webdatechooser>

 </td>

 </tr>

 <tr>

 <!-- Articles Autor Name -->

 <td class="width_s alignRight">Author</td>

 <td class="width_xl">

 <asp:textbox id="txtAutor" onblur="this.className='data_input width_xl';"

 onfocus="this.className='data_input_over width_xl';"

 runat="server" CssClass="data_input width_xl" MaxLength="50">

 </asp:textbox>

 </td>

 </tr>

 <tr>

 <!-- Articles Image (PRIMAVERA WebCentral Platform WebImageSelection) -->

 <td class="width_s alignRight">Image</td>

 <td class="width_xl">

 <asp:textbox id="txtImage" onblur="this.className='data_input width_l';"

 onfocus="this.className='data_input_over width_l';"

 runat="server" CssClass="data_input width_l" MaxLength="50">

 </asp:textbox>

 <WebC:WebImageSelectionPopUpButton id="WebImageSelectionPopUpButton1"

runat="server"></WebC:WebImageSelectionPopUpButton>

 </td>

 </tr>

 <tr>

 <!-- Articles Title -->

 <td class="width_s alignRight">Title</td>

 <td class="width_xl">

 <asp:textbox id="txtTitle" onblur="this.className='data_input width_xl';"

 onfocus="this.className='data_input_over width_xl';"

 runat="server" CssClass="data_input width_xl" MaxLength="50">

 </asp:textbox>

 </td>

 </tr>

 <tr>

 <!-- Articles Message Body (HTML editor) -->

 <td class="width_s alignRight">Article</td>

 <td class="width_xl">

 <asp:textbox id="txtArticle" onblur="this.className='data_input width_xl';"

 onfocus="this.className='data_input_over width_xl';"

 runat="server" CssClass="data_input width_xl" MaxLength="50">

 </asp:textbox>

 </td>

 </tr>

PRIMAVERA WebCentral SDK Manual

123

 </table>

 <!-- initialize the HTML editor (control id txtArticle) -->

 <script language="javascript" defer>

 editor_generate('<%=ID2Name(Me.ClientID)%>:txtArticle');

 </script>

 <!-- command button area header -->

 <table cellSpacing="0" cellPadding="0" width="100%" border="0">

 <tr>

 <TD class="filter_top_l"></TD>

 <TD class="filter_top_c"></TD>

 <TD class="filter_top_r"></TD>

 </tr>

 </table>

 <!-- command button area content -->

 <table class="filter" cellSpacing="0" cellPadding="0" width="100%" border="0">

 <tr>

 <td class="filter_l"> </td>

 <td>

 <table class="filter_btns" cellSpacing="0" cellPadding="0" border="0">

 <tr>

 <td>

<asp:button id="btnConfirm"

onmouseover="this.className='btn_m_color_over';"

onmouseout="this.className='btn_m_color';"

 runat="server" CssClass="btn_m_color"

 Text="Confirm"></asp:button></td>

 <td>

 <asp:button id="btnBack"

onmouseover="this.className='btn_m_color_over';"

onmouseout="this.className='btn_m_color';"

 runat="server" CssClass="btn_m_color"

Text="Back"></asp:button></td>

 </tr>

 </table>

 </td>

 <td class="filter_r"> </td>

 </tr>

 </table>

 <!-- command button area footer -->

 <table cellSpacing="0" cellPadding="0" width="100%" border="0">

 <tr>

 <td class="filter_bottom_l"></td>

 <td class="filter_bottom_c"></td>

 <td class="filter_bottom_r"></td>

 </tr>

 </table>

</asp:Panel>

<asp:panel id="panelImageSelection" runat="server" Visible="False">

 <!-- image selection control panel; will only be shown when the user clicked on

 the image selection button in the details panel. -->

PRIMAVERA WebCentral SDK Manual

124

 <WebC:webimageselection id="controlImageSelection"

runat="server"></WebC:webimageselection>

</asp:panel>

PRIMAVERA WebCentral SDK Manual

125

Appendix 9 – Article Administration Details User Control (VB)

Public Partial Class ArticleAdminDetail

 Inherits Web.UI.UserControl

 'declare events to signal the parent user control or form that the user clicked

 'on the back button or the confirm button. the parent user control is responsible

 'for reacting the correct way on these events.

 Public Event BackButtonClicked()

 Public Event ArticleSaved()

 'declare user controls referenced from the PRIMAVERA WebCentral Platform

 'here in the code behind file, using the exact variable name as stated in the ascx

 Protected WithEvents WebImageSelectionPopUpButton1

As Primavera.Platform.WebUI.WebImageSelectionPopUpButton

 Protected WithEvents controlImageSelection

As Primavera.Platform.WebUI.WebImageSelection

 'private attributes, which are initialized by the parent user control using the

 'public properties this class exposes

 Private _webContext As Primavera.Platform.WebUI.WebContext

 Private _visualizationMode As VisualizationMode

 '<summary>

 ' This property allows access to vital context information, that are necessary to

 ' implement access to the system's database (such as information about user,

 ' organization, portal, etc). This property needs to be initialized from the

parent

 ' user control.

 '</summary>

 Public Property WebContext() As Primavera.Platform.WebUI.WebContext

 Get

 Return _webContext

 End Get

 Set(ByVal Value As Primavera.Platform.WebUI.WebContext)

 _webContext = Value

 End Set

 End Property

 '<summary>

 ' This property allows access to the edit mode; this control needs to know if we

are

 ' currently editing an existing, or inserting a new record. This property needs to

 ' be initialized from the parent user control.

 '</summary>

 Public Property Mode() As VisualizationMode

 Get

PRIMAVERA WebCentral SDK Manual

126

 Return _visualizationMode

 End Get

 Set(ByVal Value As VisualizationMode)

 _visualizationMode = Value

 Select Case _visualizationMode

 Case VisualizationMode.Insertion

 CreateBusinessEntity()

 Case VisualizationMode.Edition

 EditBusinessEntity()

 End Select

 ShowBusinessEntity()

 End Set

 End Property 'Mode

 '<summary>

 ' The parent user control needs to initialize this property whenever the user is

 ' editing an existing record. This property needs to be initialized with the

 ' primary key of the record to be edited.

 '</summary>

 Public Property ArticleId() As Guid

 Get

 Return CType(Session("ArticleId"), System.Guid)

 End Get

 Set(ByVal Value As System.Guid)

 Session("ArticleId") = Value

 End Set

 End Property

 '<summary>

 ' The following property persists an business entity object of the record that is

 ' currently edited. This property is for internal use only.

 '</summary>

 Private Property BusinessEntity() As Entities.Article

 Get

 If Not Session("ArticleBEO") Is Nothing Then

 Return CType(Session("ArticleBEO"), Entities.Article)

 End If

 Return Nothing

 End Get

 Set(ByVal Value As Entities.Article)

 Session("ArticleBEO") = Value

 End Set

 End Property

 '<summary>

 ' The following method will be called in the ASCX file to retrieve an HTML valid

 ' identifier to reference the textbox control used as HTML editor (see also ASCX)

 '</summary>

 Protected Function ID2Name(ByVal ID As String) As String

PRIMAVERA WebCentral SDK Manual

127

 Return System.Text.RegularExpressions.Regex.Replace(ID, "(?<tok>[a-zA-Z0-

9]+)_", "${tok}:")

 End Function 'ID2Name

 '<summary>

 ' The following method will be called to build a correct portal URL, for including

 ' JavaScript files for the HTML editor (see also ASCX)

 '</summary>

 Protected Function GetCurrentPortalURL(ByVal Request As HttpRequest) As String

 Dim currentPortalUrl As String = String.Format("http://{0}/{1}", _

 Request.Url.Host, Request.Url.Segments(1))

 Return currentPortalUrl.TrimEnd("/")

 End Function 'GetCurrentPortalURL

 '<summary>

 ' The following method will cleanup the session object which are used by this

 ' user control. You should call this method whenever the in the session state

 ' persisted objects are no longer necessary.

 '</summary>

 Private Sub ClearSessionObjects()

 Session.Remove("ArticleId")

 Session.Remove("ArticleBEO")

 End Sub 'ClearSessionObjects

 '<summary>

 ' The following method will be called whenever it is necessary to initialize

 ' the user control with values from the currently loaded business entity. This

 ' is basically everytime the case, when a user edits an existing record.

 '</summary>

 Private Sub ShowBusinessEntity()

 txtAutor.Text = Me.BusinessEntity.Author

 txtArticle.Text = Me.BusinessEntity.Body

 txtDate.Value = Me.BusinessEntity.Date

 txtTitle.Text = Me.BusinessEntity.Title

 txtImage.Text = Me.BusinessEntity.Image

 'update image selection control

 WebImageSelectionPopUpButton1.ImageHtml = Me.BusinessEntity.Image

 WebImageSelectionPopUpButton1.SetConfigurationParameters()

 End Sub 'ShowBusinessEntity

 '<summary>

 ' The following method will be called whenever the user wishes to create

PRIMAVERA WebCentral SDK Manual

128

 ' a new record. This method initializes a new business entity object.

 '</summary>

 Private Sub CreateBusinessEntity()

 'initialize new business entity

 Dim businessEntity As New Entities.Article

 businessEntity.ID = Guid.NewGuid()

 businessEntity.Author = WebContext.User.UserName

 businessEntity.Date = DateTime.Now

 businessEntity.Image = String.Empty

 businessEntity.Title = String.Empty

 businessEntity.Body = String.Empty

 'initialize image button

 WebImageSelectionPopUpButton1.ImageHtml = businessEntity.Image

 WebImageSelectionPopUpButton1.SetConfigurationParameters()

 Me.BusinessEntity = businessEntity

 End Sub 'CreateBusinessEntity

 '<summary>

 ' The following method will be called to initialize the internally used business

 ' entity object for being edited. It will load the specified record from database;

 ' the record's primary key needs to be set before.

 '</summary>

 Private Sub EditBusinessEntity()

 Dim businessLayer As New Business.Articles

 Me.BusinessEntity = businessLayer.Edit(WebContext.User.EngineContext,

Me.ArticleId)

 'initialize image button

 WebImageSelectionPopUpButton1.ImageHtml = Me.BusinessEntity.Image

 WebImageSelectionPopUpButton1.SetConfigurationParameters()

 End Sub 'EditBusinessEntity

 '<summary>

 ' The following method will be called whenever it is necessary to write all

changes

 ' down to database. This method will update the existing record, which was edited,

or

 ' inserts a new record to the database.

 '</summary>

 Private Sub UpdateBusinessEntity()

 Me.BusinessEntity.Author = txtAutor.Text

 Me.BusinessEntity.Title = txtTitle.Text

 Me.BusinessEntity.Body = txtArticle.Text

PRIMAVERA WebCentral SDK Manual

129

 Me.BusinessEntity.Date = txtDate.Value

 Me.BusinessEntity.Image = txtImage.Text

 Dim businessLayer As New Business.Articles

 businessLayer.Update(WebContext.User.EngineContext, Me.BusinessEntity)

 End Sub 'UpdateBusinessEntity

 '<summary>

 ' The following event handler will be called whenever the page loads; place all

 ' initialization code here.

 '</summary>

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

 Me.WebImageSelectionPopUpButton1.PanelMaster = Me.panelArticleDetails

 Me.WebImageSelectionPopUpButton1.PanelDetail = Me.panelImageSelection

 Me.WebImageSelectionPopUpButton1.WebImageSelectionControl =

Me.controlImageSelection

 If Not Me.IsPostBack Then

Me.WebImageSelectionPopUpButton1.SetConfigurationParameters()

 End Sub 'Page_Load

 '<summary>

 ' The following event handler will be called whenever the user clicked on the

"Back"

 ' button. No changes should be written down to database; the parent will receive

an

 ' event and should hide this details control and show the table filter grid.

 '</summary>

 Private Sub cmdBack_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnBack.Click

 RaiseEvent BackButtonClicked()

 ClearSessionObjects()

 End Sub 'cmdBack_Click

 '<summary>

 ' The following event handler will be called whenever the user clicked on the

"Confirm"

 ' button. All changes should be written down to database; ; the parent will

receive an

 ' event and should hide this details control and show the table filter grid.

 '</summary>

 Private Sub cmdSave_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnConfirm.Click

 Me.UpdateBusinessEntity()

PRIMAVERA WebCentral SDK Manual

130

 RaiseEvent ArticleSaved()

 ClearSessionObjects()

 End Sub 'cmdSave_Click

 '<summary>

 ' The following event handler will be called whenever the user confirmed an image

 ' in the image selection control. We will need to update the business entities

 ' image property with the new value.

 '</summary>

 Private Sub WebImageSelectionPopUpButton1_ImageSelected(ByVal configuration

As Platform.WebUI.ImageConfiguration) Handles

WebImageSelectionPopUpButton1.ImageSelected

 If Me.BusinessEntity Is Nothing Then _

 Exit Sub

 Me.BusinessEntity.Image = configuration.ImageHtml

 txtImage.Text = configuration.ImageHtml

 End Sub 'WebImageSelectionPopUpButton1_ImageSelected

End Class 'ArticleAdminDetail

PRIMAVERA WebCentral SDK Manual

131

Appendix 10 – Article Administration User Control (HTML)

<%@ Control Language="vb" AutoEventWireup="false"

CodeBehind="ArticleAdmin.ascx.vb" Inherits="Primavera.KnowledgeBase.WebUI.ArticleAdmin"

%>

<!-- please not the corrected "Src" values for the "Register" tags; if you drag and

drop

 user controls to the designer page, please make sure that the "Src" attribute has

 the correct value - based on the final location on the production server. -->

<%@ Register TagPrefix="WebC" TagName="WebGridTableFilter"

Src="../Primavera.Platform/WebGridTableFilter.ascx" %>

<%@ Register TagPrefix="WebC" TagName="WebGridMessage"

Src="../Primavera.Platform/WebGridMessage.ascx" %>

<%@ Register Src="ArticleAdminDetail.ascx"

TagName="ArticleAdminDetail" TagPrefix="WebC" %>

<!-- the following user control will be used to issue messages to the user -->

<WebC:webgridmessage id="messageBox" runat="server"

visible="False"></WebC:webgridmessage>

<asp:Panel ID="panelArticleMaster" Visible="True" runat=server>

 <!-- this panel will handle the grid that shows all available business entities to

 the user. this "master" grid also implements common funcionalities like insert

 new item, edit/clone and remove the current item. this panel will be hidden by

 the code behind whenever the details (ArticleAdminDetail) needs to be shown. -

->

 <table id="tableArticles" runat="server" cellspacing="0" cellpadding="0"

width="100%" border="0">

 <tr>

 <td>

 <WebC:webgridtablefilter id="articleAdminMasterGrid" visible="True"

 runat="server" width="100%" height="20px" DoPagination="True"

 AllowDefaultPaging="True" AllowDefaultSorting="True"

 AllowSelectingRecordsPerPage="True"

DefaultPagingMode="NumericPages"

 DefaultPagingPosition="Top" PageSize="10" PageSizeIndex="0">

 </WebC:webgridtablefilter>

 </td>

 </tr>

 </table>

</asp:Panel>

<asp:Panel ID="panelArticleDetails" Visible="False" runat=server>

 <!-- this panel will handle the current entities details. it is shown whenever the

 user edits the currently selected or inserts a new record. we could have done

 this also in a separate aspx file. -->

 <table>

 <tr>

 <td>

 <WebC:ArticleAdminDetail id="articleAdminEntityDetails" runat="server">

PRIMAVERA WebCentral SDK Manual

132

 </WebC:ArticleAdminDetail></td>

 </td>

 </tr>

 </table>

</asp:Panel>

PRIMAVERA WebCentral SDK Manual

133

Appendix 11 – Article Administration User Control (VB)

Imports Primavera.Platform.WebUI

Imports Primavera.Platform.WebUI.Controls

Public Enum VisualizationMode

 Consultation

 Insertion

 Edition

End Enum

Partial Public Class ArticleAdmin

 Inherits Primavera.Platform.WebUI.WebComponentBase

 'declare user controls referenced from the PRIMAVERA WebCentral Platform

 'here in the code behind file, using the exact variable name as stated in the ascx

 Protected WithEvents messageBox As Primavera.Platform.WebUI.Controls.WebGridMessage

 Protected WithEvents articleAdminMasterGrid As

Primavera.Platform.WebUI.Controls.WebGridTableFilter

 '<summary>

 ' This UserControl must handle various modes, as it joins the master and

 ' detail form. The following property will persist the current state, using the

 ' Session object. The initial state is consultation, which means, the master

 ' grid view is displayed. Whenever the user edits or inserts a new record, the

 ' master grid needs to be hidden and the details pane needs to be shown.

 '</summary>

 Private Property Mode() As VisualizationMode

 Get

 If Session("ArticleAdminMode") Is Nothing Then

 Return VisualizationMode.Consultation

 Else

 Return CType(Session("ArticleAdminMode"), VisualizationMode)

 End If

 End Get

 Set(ByVal Value As VisualizationMode)

 Select Case Value

 Case VisualizationMode.Consultation

 panelArticleMaster.Visible = True

 panelArticleDetails.Visible = False

 Case VisualizationMode.Insertion

 panelArticleMaster.Visible = False

 panelArticleDetails.Visible = True

 articleAdminEntityDetails.Mode = VisualizationMode.Insertion

 Case VisualizationMode.Edition

 panelArticleMaster.Visible = False

 panelArticleDetails.Visible = True

 articleAdminEntityDetails.Mode = VisualizationMode.Edition

PRIMAVERA WebCentral SDK Manual

134

 End Select

 Session("ArticleAdminMode") = Value

 End Set

 End Property 'Mode

 '<summary>

 ' The following method is used to show a message (or an error) to the user;

 ' it will show the platform's message box user control and initialize the

 ' icon/text to be shown.

 '</summary>

 Private Sub ShowMessage(ByVal Type As Platform.WebUI.Controls.WebGridMessageType,

ByVal Title As String, ByVal Message As String)

 messageBox.Visible = True

 messageBox.MessageType = Type

 messageBox.MessageTitle = Title

 messageBox.MessageText = Message

 messageBox.Refresh()

 End Sub 'ShowMessage

 '<summary>

 ' The following method will be called when the page loads; it should be used

 ' to initialize the page's controls.

 '</summary>

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

 'initialize the table filter grid; we'll need to initialize this control with

module name

 'as well as table filter object (defined in the solutions Modules project),

which will be

 'used to query the information from the database.

 articleAdminMasterGrid.ModuleName = "Primavera.KnowledgeBase"

 articleAdminMasterGrid.TableFilterID = New Guid("{25662350-E994-45dd-9C75-

340AA517357D}")

 'initialize the details user control's web context property

 articleAdminEntityDetails.WebContext = Me.WebContext

 'if not postback: initialize the forms mode to its default (consultation)

 If Not Me.IsPostBack Then

 Mode = VisualizationMode.Consultation

 articleAdminMasterGrid.RefreshDataSource()

 End If

 End Sub 'Page_Load

 '<summary>

 ' The following method will be called whenever the user clicked on the "New"

button

PRIMAVERA WebCentral SDK Manual

135

 ' of the table filter grid. The method will simply change the mode to insertion,

which

 ' will cause the table filter grid to be hidden and the details view to be shown.

 '</summary>

 Private Sub articleAdminMasterGrid_CreateRecord(ByVal Sender As Object)

Handles articleAdminMasterGrid.CreateRecord

 Me.Mode = VisualizationMode.Insertion

 End Sub 'articleAdminMasterGrid_CreateRecord

 '<summary>

 ' The following method will be called whenever the user clicked on the "Edit"

button

 ' of the table filter grid. The method will initialize the details view unique id

 ' property and set the edition mode, which will cause the table filter to be

hidden

 ' and the details view to be shown.

 '</summary>

 Private Sub articleAdminMasterGrid_EditRecord(ByVal Sender As Object,

ByVal selectedRowIdentifier As

Platform.WebUI.Controls.WebGridTableFilter.TableFilterKeyValueCollection,

ByRef cancel As Boolean) Handles articleAdminMasterGrid.EditRecord

 Try

 articleAdminEntityDetails.ArticleId = selectedRowIdentifier("ID")

 Mode = VisualizationMode.Edition

 Catch ex As System.Security.SecurityException

 Mode = VisualizationMode.Consultation

 ShowMessage(WebGridMessageType.Warning, String.Empty, ex.Message)

 Catch ex As Exception

 Mode = VisualizationMode.Consultation

 ShowMessage(WebGridMessageType.Error, String.Empty, ex.Message)

 End Try

 End Sub 'articleAdminMasterGrid_EditRecord

 '<summary>

 ' The following method will be called whenever the user clicked on the "Clone"

button

 ' of the table filter grid. The code here demonstrates how to clone a existing

record.

 '</summary>

 Private Sub articleAdminMasterGrid_CloneRecord(ByVal Sender As Object,

ByVal selectedRowIdentifier As

Platform.WebUI.Controls.WebGridTableFilter.TableFilterKeyValueCollection,

ByRef cancel As Boolean) Handles articleAdminMasterGrid.CloneRecord

PRIMAVERA WebCentral SDK Manual

136

 Try

 Dim articleId As System.Guid = CType(selectedRowIdentifier("ID"),

System.Guid)

 Dim businessLayer As New Business.Articles

 businessLayer.Clone(WebContext.User.EngineContext, articleId)

 articleAdminMasterGrid.RefreshDataSource()

 Catch ex As System.Security.SecurityException

 ShowMessage(WebGridMessageType.Warning, String.Empty, ex.Message)

 Catch ex As Exception

 ShowMessage(WebGridMessageType.Error, String.Empty, ex.Message)

 End Try

 End Sub 'articleAdminMasterGrid_CloneRecord

 '<summary>

 ' The following method will be called whenever the user clicked on the "Delete"

button,

 ' and confirmed the client-side confirmation message. The code here shows how to

delete

 ' the currently selected record.

 '</summary>

 Private Sub articleAdminMasterGrid_DeleteRecord(ByVal Sender As Object,

ByVal selectedRowIdentifier As

Platform.WebUI.Controls.WebGridTableFilter.TableFilterKeyValueCollection,

ByRef cancel As Boolean) Handles articleAdminMasterGrid.DeleteRecord

 Try

 Dim articleId As System.Guid = CType(selectedRowIdentifier("ID"),

System.Guid)

 Dim businessLayer As New Business.Articles

 businessLayer.Remove(WebContext.User.EngineContext, articleId)

 articleAdminMasterGrid.RefreshDataSource()

 Catch ex As System.Security.SecurityException

 ShowMessage(WebGridMessageType.Warning, String.Empty, ex.Message)

 Catch ex As Exception

 ShowMessage(WebGridMessageType.Error, String.Empty, ex.Message)

 End Try

 End Sub 'articleAdminMasterGrid_DeleteRecord

 '<summary>

 ' The following method will be called whenever the user clicked on the "Refresh"

button.

PRIMAVERA WebCentral SDK Manual

137

 ' It will simply refresh the master grid and bind it to the data source.

 '</summary>

 Private Sub articleAdminMasterGrid_Refresh(ByRef Cancel As Boolean)

Handles articleAdminMasterGrid.Refresh

 articleAdminMasterGrid.RefreshDataSource()

 End Sub 'articleAdminMasterGrid_Refresh

 '<summary>

 ' The following method will be called whenever the user clicked on the "Confirm"

button

 ' in the details view. This method sets the mode to consultation, which will cause

the

 ' table filter grid to be shown and the details control to be hidden.

 '</summary>

 Private Sub articleAdminEntityDetails_ArticleSaved()

Handles articleAdminEntityDetails.ArticleSaved

 Mode = VisualizationMode.Consultation

 articleAdminMasterGrid.RefreshDataSource()

 End Sub 'articleAdminEntityDetails_ArticleSaved

 '<summary>

 ' The following method will be called whenever the user clicked on the "Back"

button in

 ' the details view. This method simply sets the mode to consultation, which will

cause the

 ' table filter grid to be shown and the details control to be hidden.

 '</summary>

 Private Sub articleAdminEntityDetails_BackButtonClicked()

Handles articleAdminEntityDetails.BackButtonClicked

 Mode = VisualizationMode.Consultation

 End Sub 'articleAdminEntityDetails_BackButtonClicked

End Class 'ArticleAdmin.ascx

PRIMAVERA WebCentral SDK Manual

138

Appendix 12 – PropertyBag Entity Class (ArticleList.vb)

Imports Primavera.Platform.Engine.Entities

Namespace PropertyBags

 <Serializable(), SerializationEntity("{A461C193-98FB-4a52-94AF-7EB6574B470E}",

"1.0")> _

 Public Class ArticleList

 Inherits PropertyBagBase

 Private mNumArticles As Integer

 Private mOrder As ArticleListOrder

 Private mIncludeImage As Boolean

 Private mIncludeSummary As Boolean

 Private mIncludeAuthor As Boolean

 Private mDetailPageID As Guid

 Public Property NumArticles() As Integer

 Get

 Return mNumArticles

 End Get

 Set(ByVal Value As Integer)

 mNumArticles = Value

 End Set

 End Property

 Public Property IncludeImage() As Boolean

 Get

 Return mIncludeImage

 End Get

 Set(ByVal Value As Boolean)

 mIncludeImage = Value

 End Set

 End Property

 Public Property IncludeSummary() As Boolean

 Get

 Return mIncludeSummary

 End Get

 Set(ByVal Value As Boolean)

 mIncludeSummary = Value

 End Set

 End Property

 Public Property IncludeAuthor() As Boolean

 Get

 Return mIncludeAuthor

PRIMAVERA WebCentral SDK Manual

139

 End Get

 Set(ByVal Value As Boolean)

 mIncludeAuthor = Value

 End Set

 End Property

 Public Property Order() As ArticleListOrder

 Get

 Return mOrder

 End Get

 Set(ByVal Value As ArticleListOrder)

 mOrder = Value

 End Set

 End Property

 Public Property DetailPageID() As Guid

 Get

 Return mDetailPageID

 End Get

 Set(ByVal Value As Guid)

 mDetailPageID = Value

 End Set

 End Property

 End Class

 Public Enum ArticleListOrder

 OrderByDate

 OrderByAuthor

 OrderByTitle

 End Enum

End Namespace

PRIMAVERA WebCentral SDK Manual

140

Appendix 13 – Remoting Layer ArticleList.vb
Imports Primavera.Platform.Engine.Entities

Imports Primavera.Platform.Engine.IRemoting

Namespace PropertyBags

 Public Class ArticleList

 Inherits Primavera.Platform.Engine.Remoting.RemoteServiceBase

 Implements IRemoting.PropertyBags.IArticleList

 Public Function Edit(ByVal RemoteContext As RemoteEngineContext, _

ByVal ID As System.Guid) As Entities.PropertyBags.ArticleList _

 Implements IRemoting.PropertyBags.IArticleList.Edit

 Dim BSO As New Business.PropertyBags.ArticleList

 Return BSO.Edit(RemoteContext.EngineContext, ID)

 End Function

 Public Sub Update(ByVal RemoteContext As RemoteEngineContext, _

ByVal PropertyBag As Entities.PropertyBags.ArticleList) _

Implements IRemoting.PropertyBags.IArticleList.Update

 Dim BSO As New Business.PropertyBags.ArticleList

 BSO.Update(RemoteContext.EngineContext, PropertyBag)

 End Sub

 Public Function Exists(ByVal RemoteContext As RemoteEngineContext, _

ByVal ID As System.Guid) As System.Boolean _

Implements IRemoting.PropertyBags.IArticleList.Exists

 Dim BSO As New Business.PropertyBags.ArticleList

 Return BSO.Exists(RemoteContext.EngineContext, ID)

 End Function

 Public Sub Remove(ByVal RemoteContext As RemoteEngineContext, _

ByVal ID As System.Guid) _

Implements IRemoting.PropertyBags.IArticleList.Remove

 Dim BSO As New Business.PropertyBags.ArticleList

 BSO.Remove(RemoteContext.EngineContext, ID)

 End Sub

 Public Function Clone(ByVal RemoteContext As RemoteEngineContext, _

ByVal ID As System.Guid) As System.Guid _

Implements IRemoting.PropertyBags.IArticleList.Clone

 Dim BSO As New Business.PropertyBags.ArticleList

 Return BSO.Clone(RemoteContext.EngineContext, ID)

PRIMAVERA WebCentral SDK Manual

141

 End Function

 End Class

End Namespace

PRIMAVERA WebCentral SDK Manual

142

Appendix 14 – The Configuration Dialog (ArticleList.vb)
Imports Primavera.Platform.Engine.IRemoting

Imports Primavera.KnowledgeBase.Entities

Imports Primavera.KnowledgeBase.IRemoting

Public Class ArticleList

 '<summary>

 ' The following private attribute will store the article lists current

 ' configuration settings.

 '</summary>

 Private articleListPropertyBag As Entities.PropertyBags.ArticleList

 Private componentLink As Platform.WinUI.ComponentLinkDialogOutput

 '<summary>

 ' custom c'tor

 '</summary>

 Public Sub New(ByVal WinContext As WinContext)

 MyBase.New(WinContext)

 InitializeComponent()

 End Sub 'New

 '<summary>

 ' Call the following method to configure the properties for a new

 ' component.

 '</summary>

 Public Function INew() As Guid

 InitializeForm()

 NewPropertyBag()

 ShowPropertyBag()

 If Me.ShowDialog() = DialogResult.OK Then

 Return articleListPropertyBag.ID

 Else

 Return Nothing

 End If

 End Function 'INew

 '<summary>

 ' Call the following method to configure the properties for an already

 ' existing component.

 '</summary>

 Public Sub IEdit(ByVal PropertyBagID As Guid)

 InitializeForm()

 EditPropertyBag(PropertyBagID)

 ShowPropertyBag()

 Me.ShowDialog()

 End Sub 'IEdit

 '<summary>

PRIMAVERA WebCentral SDK Manual

143

 ' The following method is called to initialize a new property bag

 ' entity, and is called whenever the user places a new component

 ' on a page.

 '</summary>

 Private Sub NewPropertyBag()

 articleListPropertyBag = New Entities.PropertyBags.ArticleList

 With articleListPropertyBag

 .ID = Guid.NewGuid

 .IncludeAuthor = True

 .IncludeImage = True

 .IncludeSummary = True

 .NumArticles = 5

 .Order = Entities.PropertyBags.ArticleListOrder.OrderByDate

 .DetailPageID = Guid.Empty

 End With

 End Sub

 '<summary>

 ' The following method will be called to read an existing property

 ' bag from the WebCentral database.

 '</summary>

 Private Sub EditPropertyBag(ByVal PropertyBagID As Guid)

 Dim Context As Platform.Engine.IRemoting.RemoteEngineContext =

MyBase.CreateRemoteEngineContext()

 Dim Proxy As IRemoting.IProxy = Me.CreateRemoteProxy(GetType(IRemoting.IProxy))

 articleListPropertyBag = Proxy.PropertyBags.ArticleList.Edit(Context,

PropertyBagID)

 End Sub

 '<summary>

 ' The following method will be called to store the property bags

 ' attributes to the WebCentral database.

 '</summary>

 Private Sub UpdatePropertyBag()

 Dim Context As Platform.Engine.IRemoting.RemoteEngineContext =

MyBase.CreateRemoteEngineContext()

 Dim Proxy As IRemoting.IProxy = Me.CreateRemoteProxy(GetType(IRemoting.IProxy))

 Proxy.PropertyBags.ArticleList.Update(Context, articleListPropertyBag)

 End Sub

 '<summary>

 ' The following method will be called to initialize the dialog's

 ' user interface controls with the property bag's values.

 '</summary>

 Private Sub ShowPropertyBag()

 With articleListPropertyBag

 txtArticleCount.Value = .NumArticles

 cmbArticleSort.SelectedIndex = .Order

 chkShowAuthor.Checked = .IncludeAuthor

 chkShowImage.Checked = .IncludeImage

PRIMAVERA WebCentral SDK Manual

144

 chkShowSummary.Checked = .IncludeSummary

 componentLink = Platform.WinUI.Dialogs.ComponentLinkEdit(WinContext,

.DetailPageID)

 If Not componentLink Is Nothing Then

 txtArticleDetailLink.Text = componentLink.PageName

 Else

 txtArticleDetailLink.Text = "<Default>"

 End If

 End With

 End Sub

 '<summary>

 ' The following method will be called to read the values in the

 ' dialog's user interface to to property bag object.

 '</summary>

 Private Sub ReadPropertyBag()

 With articleListPropertyBag

 .NumArticles = txtArticleCount.Value

 .Order = cmbArticleSort.SelectedIndex

 .IncludeAuthor = chkShowAuthor.Checked

 .IncludeImage = chkShowImage.Checked

 .IncludeSummary = chkShowSummary.Checked

 .DetailPageID = componentLink.PageID

 End With

 End Sub

 '<summary>

 ' The following method initializes the dialogs controls

 '</summary>

 Private Sub InitializeForm()

 cmbArticleSort.Items.Clear()

 cmbArticleSort.Items.Add("Article Date")

 cmbArticleSort.Items.Add("Article Author")

 cmbArticleSort.Items.Add("Article Title")

 cmbArticleSort.SelectedIndex = 0

 txtArticleCount.Maximum = 15

 txtArticleCount.Minimum = 1

 End Sub

 '<summary>

 ' The following method is called whenever the user clicked the Confirm

 ' button. It will shift the configuration data from the user interface

 ' to the property bag object and store the changes in the Enterprise

 ' Portals database.

 '</summary>

 Private Sub btnConfirm_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles cmdConfirm.Click

 ReadPropertyBag()

 UpdatePropertyBag()

PRIMAVERA WebCentral SDK Manual

145

 Me.DialogResult = DialogResult.OK

 End Sub

 '<summary>

 ' The following method is called whenever the user clicked the Cancel

 ' button. The user interface closes and no changes are done.

 '</summary>

 Private Sub btnCancel_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles cmdCancel.Click

 Me.DialogResult = DialogResult.Cancel

 End Sub

 '<summary>

 ' The following method is called whenever the user clicked the Browse

 ' button, to select a page that contains the ArticleDetail component.

 '</summary>

 Private Sub btnLinkDetalhe_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles cmdBrowseHyperlink.Click

 Dim dlgInput As New Platform.WinUI.ComponentLinkDialogInput()

 dlgInput.ComponentID = New Guid("{B6B669F2-35B2-43a1-A03D-7325EEB2B082}")

 dlgInput.PortalID = WinContext.Portal.PortalID

 dlgInput.PageID = articleListPropertyBag.DetailPageID

 Dim dlgOutput As Platform.WinUI.ComponentLinkDialogOutput =

Primavera.Platform.WinUI.Dialogs.ComponentLinkSelect(WinContext, dlgInput)

 If Not dlgOutput Is Nothing Then

 articleListPropertyBag.DetailPageID = dlgOutput.PageID

 ShowPropertyBag()

 End If

 End Sub

End Class

PRIMAVERA WebCentral SDK Manual

146

Appendix 15 – Culture Dependent Entity (ArticleCulture.vb)

Imports Primavera.Platform.Engine.Entities

<Serializable(), BusinessEntityAttribute("KNB_ArticleCultures","4D741C19-2237-4691-

997F-F943799438D3")> _

Public Class ArticleCulture

 Inherits BusinessEntityBase

 Private mArticleID As Guid

 Private mCultureID As Guid

 Private mTitle As String

 Private mSummary As String

 Private mBody As String

 <BusinessEntityField("ArticleID")> _

 Public Property ArticleID() As Guid

 Get

 Return mArticleID

 End Get

 Set(ByVal Value As Guid)

 mArticleID = Value

 End Set

 End Property

 <BusinessEntityField("CultureID")> _

 Public Property CultureID() As Guid

 Get

 Return mCultureID

 End Get

 Set(ByVal Value As Guid)

 mCultureID = Value

 End Set

 End Property

 <BusinessEntityField("Title")> _

 Public Property Title() As String

 Get

 Return mTitle

 End Get

 Set(ByVal Value As String)

 mTitle = Value

 End Set

 End Property

 <BusinessEntityField("Summary")> _

 Public Property Summary() As String

 Get

PRIMAVERA WebCentral SDK Manual

147

 Return mSummary

 End Get

 Set(ByVal Value As String)

 mSummary = Value

 End Set

 End Property

 <BusinessEntityField("Body")> _

 Public Property Body() As String

 Get

 Return mBody

 End Get

 Set(ByVal Value As String)

 mBody = Value

 End Set

 End Property

End Class

PRIMAVERA WebCentral SDK Manual

148

Appendix 16 – Culture Dependent Entity (ArticleCultures.vb)

Imports Primavera.Platform.Engine.Entities

<Serializable()> _

Public Class ArticleCultures

 Inherits CollectionEntityBase

 Public Sub Add(ByVal Value As ArticleCulture)

 Me.List.Add(Value)

 End Sub

 Default Public Property Item(ByVal Index As Integer) As ArticleCulture

 Get

 Return CType(Me.List.Item(Index), ArticleCulture)

 End Get

 Set(ByVal Value As ArticleCulture)

 Me.List.Item(Index) = Value

 End Set

 End Property

 Default Public Property Item(ByVal ID As Guid) As ArticleCulture

 Get

 Dim Entity As ArticleCulture

 For Each Entity In Me.List

 If Entity.ID.Equals(ID) Then Return Entity

 Next

 Return Nothing

 End Get

 Set(ByVal Value As ArticleCulture)

 Dim Entity As ArticleCulture

 For Each Entity In Me.List

 If Entity.ID.Equals(ID) Then

 Entity = Value

 Exit Property

 End If

 Next

 Add(Value)

 End Set

 End Property

 Public ReadOnly Property GetItemByArticleID(ByVal ArticleID As Guid) As

ArticleCulture

 Get

 Dim Entity As ArticleCulture

 For Each Entity In Me.List

 If Entity.ArticleID.Equals(ArticleID) Then Return Entity

 Next

PRIMAVERA WebCentral SDK Manual

149

 Return Nothing

 End Get

 End Property

 Public ReadOnly Property GetItemByCultureID(ByVal CultureID As Guid) As

ArticleCulture

 Get

 Dim Entity As ArticleCulture

 For Each Entity In Me.List

 If Entity.CultureID.Equals(CultureID) Then Return Entity

 Next

 Return Nothing

 End Get

 End Property

End Class

PRIMAVERA WebCentral SDK Manual

150

Appendix 17 – SQL Database Update Script

if exists (select * from dbo.sysobjects where id =

object_id(N'[dbo].[FK_KNB_ArticleCultures_KNB_Articles]') and OBJECTPROPERTY(id,

N'IsForeignKey') = 1)

ALTER TABLE [dbo].[KNB_ArticleCultures] DROP CONSTRAINT

FK_KNB_ArticleCultures_KNB_Articles

GO

if exists (select * from dbo.sysobjects where id =

object_id(N'[dbo].[KNB_ArticleCultures]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

drop table [dbo].[KNB_ArticleCultures]

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[KNB_Articles]')

and OBJECTPROPERTY(id, N'IsUserTable') = 1)

drop table [dbo].[KNB_Articles]

GO

CREATE TABLE [dbo].[KNB_ArticleCultures] (

 [ID] [uniqueidentifier] NOT NULL ,

 [ArticleID] [uniqueidentifier] NULL ,

 [CultureID] [uniqueidentifier] NULL ,

 [Title] [nvarchar] (250) NULL ,

 [Summary] [nvarchar] (500) NULL ,

 [Body] [nvarchar] (500) NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[KNB_Articles] (

 [ID] [uniqueidentifier] NOT NULL ,

 [Date] [datetime] NULL ,

 [Author] [nvarchar] (100) NULL ,

 [Image] [nvarchar] (250) NULL ,

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[KNB_ArticleCultures] WITH NOCHECK ADD

 CONSTRAINT [PK_KNB_ArticleCultures] PRIMARY KEY CLUSTERED

 (

 [ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[KNB_Articles] WITH NOCHECK ADD

 CONSTRAINT [PK_KNB_Articles] PRIMARY KEY CLUSTERED

 (

PRIMAVERA WebCentral SDK Manual

151

 [ID]

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[KNB_ArticleCultures] ADD

 CONSTRAINT [FK_KNB_ArticleCultures_KNB_Articles] FOREIGN KEY

 (

 [ArticleID]

) REFERENCES [dbo].[KNB_Articles] (

 [ID]

),

 CONSTRAINT [FK_KNB_ArticleCultures_PLT_Cultures] FOREIGN KEY

 (

 [CultureID]

) REFERENCES [dbo].[PLT_Cultures] (

 [ID]

)

GO

DELETE FROM KNB_ArticleCultures

DELETE FROM KNB_Articles

DECLARE @ArticleID uniqueidentifier

SET @ArticleID = NEWID()

INSERT INTO KNB_Articles VALUES (@ArticleID,GETDATE(),'Jim Button','<img

src="UserFiles/Images/003.bmp" >')

INSERT INTO KNB_ArticleCultures VALUES (NEWID(),@ArticleID,'EA16D9A6-D662-4FEC-AB32-

A2EA62D6F2CB','Desenvolvendo um Módulo','Este artigo descreve...','Para desenvolver um

Módulo ePrimavera é imprescindivel começar por uma leitura adequada...')

INSERT INTO KNB_ArticleCultures VALUES (NEWID(),@ArticleID,'9F9C7468-22A3-4414-B8F5-

596346EF4300','Developing an Module','This article describes ...','To build an new

ePrimavera Module, you should begin with a proper reading into ...')

SET @ArticleID = NEWID()

INSERT INTO KNB_Articles VALUES (@ArticleID,GETDATE(),'Laura Jones','<img

src="UserFiles/Images/002.bmp" >')

INSERT INTO KNB_ArticleCultures VALUES (NEWID(),@ArticleID,'EA16D9A6-D662-4FEC-AB32-

A2EA62D6F2CB','Integração','Discutindo a integração ...','Este assunto é susceptivel

de levantar alguma polemica. Apesar de existir bastante documentação sobre este tema

...')

INSERT INTO KNB_ArticleCultures VALUES (NEWID(),@ArticleID,'9F9C7468-22A3-4414-B8F5-

596346EF4300','How to integrate','Talking about .NET integration ...','This subject its

prone to some hot discussion, although there''s enough documentation on this theme

...')

PRIMAVERA WebCentral SDK Manual

152

Appendix 18 – Approval Workflow (ApprovalInstances.vb)

Imports System.Resources

Imports Primavera.Platform.Engine.Entities

Imports Primavera.Platform.Modules.Entities

Imports Primavera.Platform.Services.Entities

Public Class ApprovalInstances

 Implements IApprovalInstances

 Private MyModuleID As New Guid("{39af2e6e-e68e-4111-9410-24de9682421d}")

 Public Function GetApprovalsForUser(ByVal objContext As EngineContext) As

ApprovalsPending _

 Implements IApprovalInstances.GetApprovalsForUser

 Dim objApprovalServices As New

Primavera.Platform.Services.Business.ApprovalServices

 Dim objApprovalsPending As ApprovalsPending

 Dim objApprovalPending As ApprovalPending

 objApprovalsPending = objApprovalServices.GetApprovalInstancesPendingForUser(_

objContext, MyModuleID)

 If (Not objApprovalsPending Is Nothing) Then

 For Each objApprovalPending In objApprovalsPending

 With objApprovalPending

 Dim guidID As Guid

 Dim strTitle As String = String.Empty

 GetContentIDTitle(objContext, .ApprovalID, .TypeID, guidID,

strTitle)

 .Title = strTitle

 .TypeName = GetApprovalTypeName(.TypeID)

 .URL = GetApprovalURL(.TypeID, guidID)

 End With

 Next

 End If

 Return objApprovalsPending

 End Function

 Public Function CanPerformApproval(ByVal objContext As EngineContext, _

 ByVal objApprovalInstance As ApprovalInstance, _

 ByVal objCurrentState As ApprovalRuleState, _

 ByVal objCurrentApproval As ApprovalRuleApproval, _

 ByVal objApprovedState As ApprovalRuleState, _

 ByRef strErrors As String) As Boolean _

 Implements IApprovalInstances.CanPerformApproval

PRIMAVERA WebCentral SDK Manual

153

 Return True

 End Function

 Public Function CanPerformRejection(ByVal objContext As EngineContext, _

 ByVal objApprovalInstance As ApprovalInstance, _

 ByVal objCurrentState As ApprovalRuleState, _

 ByVal objCurrentApproval As ApprovalRuleApproval, _

 ByVal objApprovedState As ApprovalRuleState, _

 ByRef strErrors As String) As Boolean _

 Implements IApprovalInstances.CanPerformRejection

 Return True

 End Function

 Public Function PerformApproval(ByVal objContext As EngineContext, _

 ByVal objApprovalInstance As ApprovalInstance, _

 ByVal objCurrentState As ApprovalRuleState, _

 ByVal objCurrentApproval As ApprovalRuleApproval, _

 ByVal objApprovedState As ApprovalRuleState, _

 ByRef strErrors As String) As Boolean _

 Implements IApprovalInstances.PerformApproval

 'Unlock and publish message (only at the end)

 If (objApprovedState.StateType = ApprovalRuleStateTypeEnum.arstEndApproved)

Then

 objContext.BeginTransaction()

 Try

 UnlockAndPublish(objContext, objApprovalInstance.ID, _

objApprovalInstance.ApprovalTypeID, True)

 objContext.CommitTransaction()

 Catch ex As Exception

 strErrors = ex.Message

 objContext.RollBackTransaction()

 Return False

 End Try

 End If

 'OK

 Return True

 End Function

 Public Function PerformRejection(ByVal objContext As EngineContext, _

 ByVal objApprovalInstance As ApprovalInstance, _

PRIMAVERA WebCentral SDK Manual

154

 ByVal objCurrentState As ApprovalRuleState, _

 ByVal objCurrentApproval As ApprovalRuleApproval, _

 ByVal objRejectedState As ApprovalRuleState, _

 ByRef strErrors As String) As Boolean _

 Implements IApprovalInstances.PerformRejection

 'Unlock and publish message (only at the end)

 If (objRejectedState.StateType = ApprovalRuleStateTypeEnum.arstEndRejected)

Then

 objContext.BeginTransaction()

 Try

 UnlockAndPublish(objContext, objApprovalInstance.ID, _

objApprovalInstance.ApprovalTypeID, False)

 objContext.CommitTransaction()

 Catch ex As Exception

 strErrors = ex.Message

 objContext.RollBackTransaction()

 Return False

 End Try

 End If

 'OK

 Return True

 End Function

 Public Function GetContentInfo(ByVal objContext As EngineContext, _

 ByVal guidTypeID As System.Guid, _

 ByVal guidApprovalID As System.Guid) As ApprovalContentInfo _

 Implements IApprovalInstances.GetContentInfo

 Dim guidID As Guid

 Dim strTitle As String = String.Empty

 Dim strURL As String = String.Empty

 GetContentIDTitle(objContext, guidApprovalID, guidTypeID, guidID, strTitle)

 strURL = GetApprovalURL(guidTypeID, guidID)

 Dim objRes As New ApprovalContentInfo

 With objRes

 .ModuleID = MyModuleID

 .TypeID = guidTypeID

 .ID = guidID

 .Title = strTitle

 .URL = strURL

 End With

PRIMAVERA WebCentral SDK Manual

155

 Return objRes

 End Function

 Public Function TranslateSpecialGroup(ByVal objContext As EngineContext, _

 ByVal guidTypeID As System.Guid, _

 ByVal guidSpecialGroupID As System.Guid, _

 ByVal guidUserID As System.Guid, _

 ByVal strTagInfo As String) As System.Guid _

 Implements IApprovalInstances.TranslateSpecialGroup

 Return Nothing

 End Function

 Private Sub UnlockAndPublish(ByVal objContext As EngineContext, _

 ByVal guidApprovalID As Guid, _

 ByVal guidTypeID As Guid, _

 ByVal blnPublish As Boolean)

 'Get content ID

 Dim guidID As Guid

 Dim strTitle As String = String.Empty

 GetContentIDTitle(objContext, guidApprovalID, guidTypeID, guidID, strTitle)

 Dim objProxy As New Primavera.KnowledgeBase.Business.Proxy

 If guidTypeID.Equals(ApprovalTypesIDs.Articles) Then

 Dim objBSO As New Business.Articles

 objBSO.UnLock(objContext, guidID)

 If blnPublish Then objBSO.Publish(objContext, guidID)

 End If

 End Sub

 Private Sub GetContentIDTitle(ByVal objContext As EngineContext, _

 ByVal guidApprovalID As Guid, _

 ByVal guidTypeID As Guid, _

 ByRef guidContentID As Guid, _

 ByRef strTitle As String)

 If guidTypeID.Equals(ApprovalTypesIDs.Articles) Then

 Dim objBSO As New Business.Articles

 objBSO.GetContentFromRuleID(objContext, guidApprovalID, guidContentID,

strTitle)

 End If

PRIMAVERA WebCentral SDK Manual

156

 End Sub

 Private Function GetApprovalTypeName(ByVal guidTypeID As Guid) As String

 If guidTypeID.Equals(ApprovalTypesIDs.Articles) Then

 Return "Categorias de Artigos"

 Else

 Return ""

 End If

 End Function

 Private Function GetApprovalURL(ByVal guidTypeID As Guid, _

 ByVal guidContentID As Guid) As String

 If guidTypeID.Equals(ApprovalTypesIDs.Articles) Then

 Return "ComponentID=" + ComponentsIDs.KnowledgeBaseArticle.ToString _

 + "&ArticleID=" + guidContentID.ToString()

 Else

 Return String.Empty

 End If

 End Function

End Class

PRIMAVERA WebCentral SDK Manual

157

Appendix 19 – SQL Database Update Script

 if exists (select * from dbo.sysobjects

where id = object_id(N'[dbo].[FK_KNB_ArticleCultures_KNB_Articles]')

and OBJECTPROPERTY(id, N'IsForeignKey') = 1)

 ALTER TABLE [dbo].[KNB_ArticleCultures] DROP CONSTRAINT

FK_KNB_ArticleCultures_KNB_Articles

 GO

 if exists (select * from dbo.sysobjects

where id = object_id(N'[dbo].[KNB_ArticleCultures]')

and OBJECTPROPERTY(id, N'IsUserTable') = 1)

 drop table [dbo].[KNB_ArticleCultures]

 GO

 if exists (select * from dbo.sysobjects

where id = object_id(N'[dbo].[KNB_Articles]')

and OBJECTPROPERTY(id, N'IsUserTable') = 1)

 drop table [dbo].[KNB_Articles]

 GO

 CREATE TABLE [dbo].[KNB_ArticleCultures] (

 [ID] [uniqueidentifier] NOT NULL ,

 [ArticleID] [uniqueidentifier] NULL ,

 [CultureID] [uniqueidentifier] NULL ,

 [Title] [nvarchar] (250) NULL ,

 [Summary] [nvarchar] (500) NULL ,

 [Body] [nvarchar] (500) NULL

) ON [PRIMARY]

 GO

 CREATE TABLE [dbo].[KNB_Articles] (

 [ID] [uniqueidentifier] NOT NULL ,

 [Article] [nvarchar] (50) NOT NULL ,

 [Date] [datetime] NULL ,

 [Author] [nvarchar] (100) NULL ,

 [Image] [nvarchar] (250) NULL ,

 [Published] [bit] NULL ,

 [Locked] [bit] NULL ,

 [ApprovalID] [uniqueidentifier] NULL

) ON [PRIMARY]

 GO

 ALTER TABLE [dbo].[KNB_ArticleCultures] WITH NOCHECK ADD

 CONSTRAINT [PK_KNB_ArticleCultures] PRIMARY KEY CLUSTERED

 (

 [ID]

) ON [PRIMARY]

PRIMAVERA WebCentral SDK Manual

158

 GO

 ALTER TABLE [dbo].[KNB_Articles] WITH NOCHECK ADD

 CONSTRAINT [PK_KNB_Articles] PRIMARY KEY CLUSTERED

 (

 [ID]

) ON [PRIMARY]

 GO

 ALTER TABLE [dbo].[KNB_ArticleCultures] ADD

 CONSTRAINT [FK_KNB_ArticleCultures_KNB_Articles] FOREIGN KEY

 (

 [ArticleID]

) REFERENCES [dbo].[KNB_Articles] (

 [ID]

),

 CONSTRAINT [FK_KNB_ArticleCultures_PLT_Cultures] FOREIGN KEY

 (

 [CultureID]

) REFERENCES [dbo].[PLT_Cultures] (

 [ID]

)

 GO

 DELETE FROM KNB_ArticleCultures

 DELETE FROM KNB_Articles

 DECLARE @ArticleID1 uniqueidentifier

 SET @ArticleID1 = NEWID()

 INSERT INTO KNB_Articles VALUES (@ArticleID1,'Article 1',GETDATE(),'Jim Button',

'',1,0,NULL)

 INSERT INTO KNB_ArticleCultures VALUES (NEWID(),@ArticleID1,

'EA16D9A6-D662-4FEC-AB32-A2EA62D6F2CB','Desenvolvendo um Módulo',

'Este artigo descreve...',

'Para desenvolver um Módulo ePrimavera é imprescindivel começar por uma leitura

adequada...')

 INSERT INTO KNB_ArticleCultures VALUES (NEWID(),@ArticleID1,

'9F9C7468-22A3-4414-B8F5-596346EF4300','Developing an Module',

'This article describes ...','

To build an new ePrimavera Module, you should begin with a proper reading into ...')

 DECLARE @ArticleID2 uniqueidentifier

 SET @ArticleID2 = NEWID()

 INSERT INTO KNB_Articles VALUES (@ArticleID2,'Article 2',GETDATE(),'Laura Jones',

'',1,0,NULL)

 INSERT INTO KNB_ArticleCultures VALUES (NEWID(),@ArticleID2,

'EA16D9A6-D662-4FEC-AB32-A2EA62D6F2CB','Integração',

'Discutindo a integração ...',

'Este assunto é susceptivel de levantar alguma polemica. Apesar de existir bastante

documentação sobre este tema ...')

PRIMAVERA WebCentral SDK Manual

159

 INSERT INTO KNB_ArticleCultures VALUES (NEWID(),@ArticleID2,

'9F9C7468-22A3-4414-B8F5-596346EF4300','How to integrate',

'Talking about .NET integration ...',

'This subject its prone to some hot discussion, although there''s enough documentation

on this theme ...')

 DECLARE @CategoryTypeID uniqueidentifier

 SET @CategoryTypeID = 'B9F475F4-2C54-463f-8FD9-F6318EDAE971'

 DELETE FROM PLT_CategoryCultures

WHERE CategoryID IN (SELECT ID FROM PLT_Categories WHERE CategoryTypeID =

@CategoryTypeID)

 DELETE FROM PLT_CategoryPermissions

WHERE CategoryID IN (SELECT ID FROM PLT_Categories WHERE CategoryTypeID =

@CategoryTypeID)

 DELETE FROM PLT_Categories

WHERE ID IN (SELECT ID FROM PLT_Categories WHERE CategoryTypeID = @CategoryTypeID)

 DECLARE @CategoryID uniqueidentifier

 SET @CategoryID = NEWID()

 INSERT INTO PLT_Categories

([ID],CategoryTypeID,Category,ParentID,FullName,ApprovalRuleID)

VALUES (@CategoryID,@CategoryTypeID,'Artigos técnicos',NULL,'\Artigos técnicos\',NULL)

 INSERT INTO PLT_CategoryCultures ([ID],CategoryID,CultureID,[Name])

VALUES (NEWID(),@CategoryID,'EA16D9A6-D662-4FEC-AB32-A2EA62D6F2CB','Artigos técnicos')

 INSERT INTO PLT_CategoryPermissions

VALUES (NEWID(),@CategoryID ,1,'E8220F2B-01A9-4A04-A4A9-21DE20CD3325',1,1,1,1,1)

 INSERT INTO PLT_CategoryPermissions

VALUES (NEWID(),@CategoryID ,1,'4AA6432C-40A8-457A-9555-5021814CB96C',1,1,1,1,1)

 INSERT INTO PLT_CategoryPermissions

VALUES (NEWID(),@CategoryID ,1,'866B5E19-E098-4838-B51C-86BC522E9FD1',1,1,1,1,1)

 INSERT INTO PLT_EntityCategories VALUES (NEWID(),@ArticleID1,@CategoryID)

 INSERT INTO PLT_EntityCategories VALUES (NEWID(),@ArticleID2,@CategoryID)

© 2010 PRIMAVERA Business Software Solutions S. A. All rights reserved.

