(») Primavera

PRIMAVERA
WebCentral SDK
Manual

PRIMAVERA WebCentral SDK Manual

Index

1 = 1
I OAUCEION L.ttt 4
L L 5
PRIMAVERA WeEbCONT Al ...t et ettt et e neeeeanenns 5
CONEENES e 5

[0 0 570 1= | 5
MOAUIES Lot e 6

F N I =Tol a1 Tor= T @ AT V4T 6

FAN B oAZ= T[] o 1< Y AT PP 8
PRIMAVERA WebCeNTral SDK ...ttt et ettt et et e e e e e e e et e e e e e neaee e aeenes 12
R0 LU 1 =T o =1 o 12
(O L 1T =TT 10 o1 13
PRIMAVERA WebCeNtral SDK ...ttt et et et et e et e e e et e e e e e re e aneanenes 13
=] I Y] <Y o P 14
Step 1 — Creating @ NEW MOAUIEuii e e e e e e e ane e neanans 14
Step 1.1 = Creating the base SOIULIONuiiii e e 14
Step 1.2 - Signing the ASSEMDIIES ...vviiiiii i 14
Step 1.3 = Publishing the new module ... e 15
Step 2 — Creating @ NEW COMPONENT. ...ttt aeaaaaas 17
Step 2.1 - Implementing the BUusiness ENtity.......coovuiiriiiiiiii e e 17
Step 2.2 - Implementing the Data ServiCeS.o e 18
Step 2.3 - Implementing the BUSINESS SerViCe.....couiuiiiii i eas 18
Step 2.4 - Publishing the components to the Platform.........c.oooiiiiii e 19
Step 2.5 - The component’s USEr CONTIOI ...uiiiiiei i aaeas 21
Step 2.6 - Compile, deploy and test the modifications made........ccoovviiiiiiiiiiiiiiciie, 22
Step 3 - The Article Administration COMPONENTiiiiinii e e 23
Step 3.1 - Publishing the Article Administration Component........cccooiiiiiiiiiiiiiiieenes 24
Step 3.2 - Defining the Master Grid’s Data SOUICEcoviuiiiiiiiiiii e 25
Step 3.3 - Creating the Administration Detail User Controlcooviviiiiiiiiiiiiieieeenees 26
Step 3.4 - Creating the Administration User CONtrolc.coviieiiiiiiiii e 33
Step 3.5 - Testing the Article Administration Component.......cooviiiiiiiiiiii e 40
Step 4 — Component CUSTOMIZAtioNuiiii e 42
Step 4.1 - Creating an entity to persist the configurationccooiiiiic 42
Step 4.2 - Configuration support in the business service layerccooviiiiiiiiiiiiiininns 43
Step 4.3 - Define the Interfaces for REMOTING ...c.viviiiiiiiiiii s 44

PRIMAVERA WebCentral SDK Manual

Step 4.4 - Mapping the Remoting to the BUSINESS Layer....c.oviiiiiiiiiiiiiiiiiiiiiienanens 45
Step 4.5 - Creating the Configuration Dialogvvieiiiiiiiiii e 46
Step 4.6 - Invoking the Configuration Dialog.....o.vviiiiiiiiii e 52
Step 4.7 - Applying the Configuration Settingscoovviiiiiii 52
Step 4.8 - Testing the Configuration Dialog......cvviieiiiiii e 54
Step 5 = COMPONENET SECUMTY ittt ettt e a e e aaneans 55
Step 5.1 — Support for the CompoNent SECUNILY «.viuviiiiiiii e 56
Step 5.2 - Testing the Component SECUNILY ..ot 57
Step 6 — Supporting MUItIPIE LangUagesvieiiiiiiiitiiee it e s st e ane s aaeaneaanens 58
Step 6.1 - Preparing the business entities for localization..........ccooviiiiiiiiiiiiiic 58
Step 6.2 - Changes in the Administration Component.......ccoiiiiiiiiiii i s 59
Step 6.3 - Changes in the Visualization Component.......cooiviiiiiiiiiii e 64
Step 6.4 - Testing the multi-language SUPPOrT.....iiii i e 65
Step 7 — SUPPOITING APPIOValS c. ittt 66
Step 7.1 - Preparing the Business Entities for Approvalscovvieiiiii i 66
Step 7.2 - Preparing the Data Services for Approvalscooviiiiiiiiiii i 68
Step 7.3 - Preparing the Business Layer for Approvals......ccviiiiiiiiii i ans 69
Step 7.4 - Implementing Approvals in the Modulecviiiiiiii i 71
Step 7.5 - Implementing Categories in the Modulecoviiiiiiii s 72
Step 7.6 - Updating the Article Administration UL.........oiiiiiiiiiiiiiii i 73
Step 7.7 - Testing the Approval and Category SUpPpPOrt ... 84
Step 8 — Crystal Reports INtegration ..o e e 87
Step 8.1 - Creating a new component for reportingoouvveiiriii i 87
Step 8.2 - Creating the Crystal Report document.......ciiiiiiiiii s 90
Step 8.3 - Testing the Reporting COmMpPONeNntviiiiiiii e es 92
PRIMAVERA ERP INt@Gration .uuuuesiitiiiei it ettt e et e e e et et e e et e n e et e r e e neaneennennes 93
L LT T 93
Creating a new Web component for ERP Data ACCESS.....uiiviiiiiiiiiiiiiiiie it aaeneanaaas 93
AT aTe Lo XV T @leT 5 oY o] g = o | =3 PP 96
Frequently Asked QUESTIONS ... e e e e e et e n e e e e r e e e e anaanes 97
What does the deployment ProCeSS 07 ...t aeaanaes 97
How can I debug my mMOdUIE? ... e e e e eneens 97
How do I change the portal’s template? e ee 98
How do I create a new layout template? ... e 99
POMtal HEAAEI . ottt 99
POrtal FOOT I ..t 100
X et e 100

PRIMAVERA WebCentral SDK Manual

LK S ettt 100
=T 0= [=1 e =T PP 101
HeadliNg SECLIONS ..viiiiiii i 101
SEAICH SECHIONS 1uiuiiiitiii i 104
HEAAINES o 104
2o T = I I Yo 1| o PPN 104
POrtal LOGIN Pag . . ittt 105
T) 105
=T 0T 106
CoNtent LiStS 1uuiiiii i 107
(o] a1 =T o] @] o)« [o] 5 |3 PP 107
Content HeadliNeSviviiiiii 107
OIS 108
L] T 108
LT o] o 109
P Y 0] 1=T T PP 110
Appendix 1 — Business ENtity ArtiCle . .o.uiriiiii i 110
APPENAIX 2 = BUSINESS SOIVICE . tuutiitiittiiteit ittt ettt ettt ae s aae s e aseeaaeaeaareaeaaneans 112
Appendix 3 — Article Web User Control (HTML) ..uvuviiriiieii i se e nennnaes 115
Appendix 4 - Article Web User Control (Code behind)coooviiiiiiiiiiiii s 116
Appendix 5 — Article List Web User Control (HTML) ..vviiiiiiiiiiii i sennaans 118
Appendix 6 - Article List Web User Control (Code behind)ccovvviiiiiiiiiiiiicii s 119
Appendix 7 = SQL Script for the KnowledgeBaseccviiiiiiiiiiiiiii i veeaaaes 120
Appendix 8 - Article Administration Details Control (HTML)....ccoviiiiiiiiiiii i 121
Appendix 9 - Article Administration Details User Control (VB) ...ocvvvrviiiiiiiiiiiiiiieninanns 125
Appendix 10 - Article Administration User Control (HTML)oiveiiiiiiiiii e 131
Appendix 11 - Article Administration User Control (VB)vvvviiriiiiiiiiiii i neaaaans 133
Appendix 12 - PropertyBag Entity Class (ArticleList.vb)....cooviiiiiii s 138
Appendix 13 — Remoting Layer ArticleList.Vvho 140
Appendix 14 - The Configuration Dialog (ArticleList.vb)....coviiiiiiiii s 142
Appendix 15 - Culture Dependent Entity (ArticleCulture.vb).....ccooviiiiiiiiiiiiiiiiiaens 146
Appendix 16 - Culture Dependent Entity (ArticleCultures.vb) ... 148
Appendix 17 — SQL Database Update Script.........coooieiiiiiiii e 150
Appendix 18 - Approval Workflow (Approvallnstances.vb).......ccoooiiiiiiiiiiiiiiiieeees 152
Appendix 19 — SQL Database Update Script.........coooieiimiiiii e 157

Q

PRIMAVERA WebCentral SDK Manual

Introduction

This documentation is part of the PRIMAVERA WebCentral Software Development Kit (SDK),
which allows developers to build and implement customized components which integrate
seamlessly to the PRIMAVERA WebCentral Platform.

The PRIMAVERA WebCentral SDK was in particular targeted for the PRIMAVERA partner
community, to enable and speed up product extensibility and customization for their end-users.

The PRIMAVERA WebCentral SDK consists of various utilities which help developers to build
state-of-the-art components for the PRIMAVERA WebCentral Platform and publish them to the
production environment.

The PRIMAVERA WebCentral SDK can be also a complement of Application Builder solution.

In Application Builder it is possible to build an entity model. After publishing this model, code is
auto-generated and made available, in the PRIMAVERA WebCentral structure. However, with this
tool it is not possible to customize forms at a layout level and make business rules.

In this document you will find valuable background information, a step-by-step example of how
to build a customized component for the PRIMAVERA WebCentral Platform and a reference of the
most common gotchas. It will provide you a guide and reference whenever you plan to develop
customized components to extent the out-of-the-box features of PRIMAVERA WebCentral.

How to develop a Connector? (Application Builder)
How to develop a Connector? (Workflow Designer)

http://www.primaverabss.com/pkb/PortalRender.aspx?PageID=04a1c96b-cc48-4f46-961b-dda93e36ace6&KBCategoryID=532b06e2-a125-11de-a319-00155d50c867&KBItemID=9dfe09c3-613b-40f6-9a4a-0f00d0342063
http://www.primaverabss.com/pkb/PortalRender.aspx?PageID=e42fbca7-fea6-4a84-a9c2-9a346bdd7433&KBCategoryID=a5d93a5b-a121-11de-a319-00155d50c867&KBItemID=7eedbf1f-d086-460b-8949-4719dc69ce26

PRIMAVERA WebCentral SDK Manual

Overview

Chapter 1 - Gives a general, technical overview about the product itself. Here you will find
information about the product structure, installation, operation and the SDK utilities.

Chapter 2 - Step-by-Step example on how to build a module for PRIMAVERA WebCentral.
Chapter 3 - Discusses the integration of the PRIMAVERA ERP.

Chapter 4 - Frequently Asked Questions.

Chapter 5 - Source Code used to build the step-by-step example.

PRIMAVERA WebCentral

In a time of digitalization and optimization of business processes, the use of internet and intranet
is getting more and more important. Organizations are searching solutions to easily share
information between various communities, such as employees, partners and clients, which for
themselves reside in very different locations. Information need to be available 24 hours and 7
days a week at any possible locality.

The PRIMAVERA WebCentral provide a solution for this problem. It implements a community
based security model which increases productivity and prevents from a disorganized way of
searching information. It provides components that promote employees, partners and clients to
quickly solve their daily tasks and problems, such as marking employee holidays, enter
organizational requests, dispense records, ordering products, etc, with direct connection to the
PRIMAVERA ERP solution. It provides customizable, multi-level workflows for approvation as well
as support for any language that you might want to target your portal to.

PRIMAVERA WebCentral is a platform for content management, which facilitates the creation of
various portals, each orientated to their specific audience, sharing information targeted to any of
these audiences but always having an easy way to administrate this information, like events,
messages, press-releases, etc.

PRIMAVERA WebCentral is a platform for collaboration. It includes features to promote
automatization, business workflow and approvation based on a web interface.

PRIMAVERA WebCentral is a platform for integration of any kind of content, including
components that were developed by third party companies to extent existing components and
help managing business processes using the internet or intranet as communication channel to
reach employees, clients or partners.

Contents

We understand the content as output of a component’s execution. The output allows the user to
browse through existing content (for example visualization of messages), or manage new or
already existing content (content administration: for example inserting a new message to be
shown). As for PRIMAVERA, there is no better definition for content as everything is content,
since it is managed by components that are compatible with the PRIMAVERA WebCentral
Platform.

Components

Understand Components as small applications that generate new -and visualize existing
contents. Imagination is the only limitation for developing new components. Imagine a
component that obtains the current weather report for a selected city, using a Web service and
displays this information in the client’s browser, or a component that allows to list accounting

PRIMAVERA WebCentral SDK Manual

details for a customer we selected but also components to introduce, publish and visualize press
communications referring to your company.

Components can be designed and developed by any person that has knowledge of how to
develop web applications using the Microsoft .NET Framework. This is by far the only and most
important requirement needed for developing components for the PRIMAVERA WebCentral
Platform.

Modules

Modules that are developed for the PRIMAVERA WebCentral Platform expose various
components. Most probably, in the beginning, you’ll have difficulties distinguish between
Modules and Components, but soon you’ll understand that a module is one Visual Studio
Solution, which exposes various components for the PRIMAVERA WebCentral Platform.

Take, for example, the base solution of PRIMAVERA WebCentral and you’ll see the following
modules, each one exposing categorized components:

Administration Components to administrate PRIMAVERA WebCentral (security,
categories, approvals, etc.)

Productivity Components that will help you to quickly design your portals pages,
such as multimedia components, HTML components, downloads,
events, forms, polls, etc.

Human Resources Components that can be used to connect PRIMAVERA WebCentral to the
PRIMAVERA ERP and implement an employee “self-service”, for
example to mark holidays, print salary receipts, government tax
declaration, etc.

Account Receivables Components that can be used to connect PRIMAVERA WebCentral to the
PRIMAVERA ERP and show account receivable information for a client.

Sales Components, connected to the PRIMAVERA ERP that show sells
information as well as the B2B shopping-cart component.

A Technical Overview

The installation directory

The PRIMAVERA WebCentral Platform is normally installed and configured in one of the default
Internet Information Services (IIS) directories under the c:\inetpub\wwwroot\WebCentral
folder. You can find the following type of files in the installation directory:

\Bin Contains all assemblies that are necessary to run the web based user
interface for the PRIMAVERA WebCentral Platform.

\Modules Contains all registered modules for the PRIMAVERA WebCentral Platform.
There are several subfolders, each subfolder contains all necessary files
for the module (dIl, html, aspx, ascx, etc)

\UserFiles All files that are uploaded by users end up here. There is a general
division of images and documents - each file type has its own folder.

PRIMAVERA WebCentral SDK Manual

\SystemFiles As the name already says, this folder contains system files that are not
directly used by the PRIMAVERA WebCentral Platform, such as commonly
used images, java script files and email notification templates.

\WebTemplates Templates that define the visual appearance of the PRIMAVERA
WebCentral. Here you will find various predefined templates which consist
of custom style sheets (CSS) and images. You also can create new
templates to customize the portals appearance, based on one of these
templates.

\Tools Various helpful tools such as the instance configuration tool, site
administrator and module registrar.

Files like custom style sheets and HTML, ASPX and ASCX files can freely be modified to change
the websites behaviour or appearance, but please consider backing them up as they will be
overwritten with any future installation or update.

The Database

All portal information, such as web pages, components, security roles, approvals, contents are
stored in a SQL Server database. This is the reason why you should create a database
management plan to regularly backup, reindex and defragment this database. An optimized
database often can speed up the rendering of a webpage by 100% and you’ll always have the
benefit of a backed up database. Consult the SQL Server Books Online on how to create a
Database Management Plan for your database.

The name of the database used by PRIMAVERA WebCentral is ePrimavera by default. If you are
running more than one PRIMAVERA WebCentral instance, the non-default instance database will
be named ePrimavera_xpto where xpto stands for the name of the instance.

The PRIMAVERA WebCentral Services

Time consuming tasks, like for example broadcasting notifications, are implemented by the
PRIMAVERA WebCentral Services. You can control the PRIMAVERA WebCentral Services by
opening the system’s Management Console (Control Panel | Administrive Tools | Services |
PRIMAVERA WebCentral Services).

PRIMAVERA WebCentral SDK Manual

. Services (Local)

PRIMAVERA WebCentral Services Name Description Status Startup Type Log On As g
£ Parental Controls This service ... Manual Local Service
Start the service £ Peer Name Resolution Protocol Enables serv... Manual Local Service
(. Peer Networking Grouping Enables mul... Manual Local Service
Description: £ Peer Networking Identity Manager Provides ide... Manual Local Service
WebCentral Scheduling Services v7.55 £ Performance Counter DLL Host Enables rem... Manual Local Service
. Performance Logs & Alerts Performanc... Manual Local Service
7 Plug and Play Enablesac.. Started Automatic Local Syste...
Pl Driver HPZ12 Automatic Local Service
£ PnP-X IP Bus Enumerator The PnP-X... Manual Local Syste...
£ PNRP Machine Name Publication Service This service ... Manual Local Service B
£ Portable Device Enumerator Service Enforces gr... Manual Local Syste... ‘j
i Power Manages p... Started Automatic Local Syste...
£ PRIMAVERA CCOP Services Host Gere os pro.. Started Automatic Local Syste...
£ PRIMAVERA Logistics Services Host Started Automatic Local Syste...
#4 PRIMAVERA WebCentral Services WebCentral... Automatic Local Syste...
£ PRIMAVERA WebCentral Workflow Server Runs PRIM... Automatic Local Syste...
£ Print Spooler Loads files t... Started Automatic Local Syste...
£ Problem Reports and Solutions Control ... This service ... Manual Local Syste...
£ Program Compatibility Assistant Service This service ... Started Automatic Local Syste...
£ Protected Storage Provides pr... Started Manual Local Syste...
£ Quality Windows Audio Video Experience Quality Win... Manual Local Service

+ Remote Access Auto Connection Mana... Creates a co.. Manual Local Syste...

‘. Remote Access Connection Manager Manages di... Manual Local Syste... -

Extended /(Standard/

You should stop and disable this service on your development machine whenever not needed, as
it uses resources that could block some files from being deployed.

A Developer’s View

The PRIMAVERA WebCentral modules are essential parts for developing components for the
PRIMAVERA WebCentral Platform. One module exposes the following functionalities for the
PRIMAVERA WebCentral general architecture:

» Components that implement certain functionality and can be placed and rendered by one or
many portals pages.

» A module can implement functionality which can be inherited and used by other existing
modules or components.

» A module or component can use all or parts of the functionality offered by the PRIMAVERA
WebCentral Platform (such as security, mappings and approvals).

» Modules group and categorize components that are inter-connected with them selves in a
way that a user can find them easily.

PRIMAVERA WebCentral SDK Manual

A single module, which exposes one or more components for the PRIMAVERA WebCentral,
consists of one single Visual Studio 2008 solution having 8 or 9 Visual Studio 2008 projects,
which are organized the following way:

s
User
Interface [Module . WebUI] Module . WinUI] =
A =]
=5
P =5
Module.Remoting] ;
Business " g_
Services =
[Module.Entities } Module.Business] E
-
Data
Services

WebUI Web-based user interfaces. These User Controls are usually used to
render contents for the client interface (HTML)

WinUI Windows Forms based user-interfaces. These dialogs are usually used for
content or component administration purposes.

IRemoting Remoting Interfaces (see also Remoting)

Remoting Remoting Layer. Windows Forms based user-interfaces use remoting to
communicate between Client and Server. These classes implement the
contract defined by the remoting interfaces. They generally to map the
implemented methods to the Business Layer.

Entities Business Entity Layer. This project should contain all entity classes used
throughout the module. Entity classes should only expose properties — no
business logic (public methods) should be implemented here.

Business Business Layer. All business rules should be implemented here.

Data Data Layer. This layer implements the data access to the specified
database management system. It is best practise to locate all methods
that perform direct data access in this Visual Studio project.

Modules PRIMAVERA WebCentral Contract project. This project contains classes
that interact with the PRIMAVERA WebCentral and exposes information
about your module and your module’s components, approvals, categories,
etc, to the PRIMAVERA WebCentral Platform.

Workflow This project exposes the events and activities (Create, Remove, Update

and Delete) associated to the Business Entity Layer. This connector can
be used by Workflow Designer solution to create processes.

PRIMAVERA WebCentral SDK Manua

User Interface Layer

The user interface layer consists of two .NET assemblies targeting the web and the windows
forms user interface (WebUI and WinUI). Whenever possible you should consider using HTML
user interfaces to visualize and manage components, as they are less error-prone due
configuration problems, easier to develop and target all operating system platforms. However,
you might need to implement Window Forms user interfaces to configure the components
appearance in the Site Adminstration utility. For example, by the time you place a component
onto a portal’s page, optionally you can ask the user to configure its appearance - this
configuration needs to be done as Windows Forms Dialog.

The WebUI project implements all components that are shown in the client’s browser, or let’s say
HTML. These can be any kind of component, like managing the content or visualizing the content.
Web-based component’s are usually implemented as plain ASP.NET user control (ascx), but
inherit specific methods from the PRIMAVERA WebCentral Platform base class
WebComponentBase.

Remoting Layer

The remoting layer, which is implemented by the assemblies IRemoting and Remoting, is
necessary to achieve communications between client and server whenever working with Windows
Forms-based user interfaces. In this case, the user interface is hosted in the browser (like an
ActiveX control) on the client machine, whereas the engine (business layer) is running on the
web server. Remoting is used to tunnel all communications between client user interface and
servers business layer.

The IRemoting assembly defines the contract between the code that runs on the client and the
code that runs on the web server. The actual implementation of this contract is only available on
the web server. The following segment shows a typical example of how to code a components
interface:

Public Interface ICompFlashPlayers
Function Exists(ByVal RemoteContext As RemoteEngineContext, _

ByVal ID As System.Guid) As System.Boolean

Function Edit (ByVal RemoteContext As RemoteEngineContext,
ByVal ID As System.Guid) As Entities.CompFlashPlayer

Function Clone (ByVal RemoteContext As RemoteEngineContext,

ByVal ID As System.Guid) As System.Guid

Sub Update (ByVal RemoteContext As RemoteEngineContext,

ByRef CompFlashPlayer As Entities.CompFlashPlayer)

Sub Remove (ByVal RemoteContext As RemoteEngineContext,
ByVal ID As System.Guid)

End Interface

The Remoting assembly implements the contract IRemoting and will be run on the web
server and generally maps to methods implemented by the Business project of the module. A
typical implementation of a remoting component is shown by the following code segment:

10

PRIMAVERA WebCentral SDK Manua

Public Class CompFlashPlayers
Inherits Engine.Remoting.RemoteServiceBase

Implements ICompFlashPlayers

Public Function Clone (ByVal RemoteContext As
Engine.IRemoting.RemoteEngineContext,
ByVal ID As System.Guid) As System.Guid
Implements IRemoting.ICompFlashPlayers.Clone
Dim BSO As New Business.CompFlashPlayers
Return BSO.Clone (RemoteContext.EngineContext, ID)

End Function

Public Function Edit (ByVal RemoteContext As
Engine.IRemoting.RemoteEngineContext,
ByVal ID As System.Guid) As Entities.CompFlashPlayer
Implements IRemoting.ICompFlashPlayers.Edit
Dim BSO As New Business.CompFlashPlayers
Return BSO.Edit (RemoteContext.EngineContext, ID)

End Function

Public Function Exists (ByVal RemoteContext As
Engine.IRemoting.RemoteEngineContext,
ByVal ID As System.Guid) As Boolean
Implements IRemoting.ICompFlashPlayers.Exists
Dim BSO As New Business.CompFlashPlayers
Return BSO.Exists (RemoteContext.EngineContext, ID)

End Function
Public Sub Remove (ByVal RemoteContext As Engine.IRemoting.RemoteEngineContext,

ByVal ID As System.Guid) Implements IRemoting.ICompFlashPlayers.Remove
Dim BSO As New Business.CompFlashPlayers
BSO.Remove (RemoteContext.EngineContext, ID)

End Sub

Public Sub Update (ByVal RemoteContext As Engine.IRemoting.RemoteEngineContext,

ByRef CompFlashPlayer As Entities.CompFlashPlayer)
Implements IRemoting.ICompFlashPlayers.Update
Dim BSO As New Business.CompFlashPlayers
BSO.Update (RemoteContext.EngineContext, CompFlashPlayer)
End Sub
End Class

Business Entities, Business Services and Data Services

The Business Entities, Business Services and Data Services assemblies implement the 3-tier
layers that generally are used in all PRIMAVERA Applications.

11

PRIMAVERA WebCentral SDK Manual

PRIMAVERA WebCentral Modules Contract Layer

The Modules assembly contains classes that identify the module as developed for the PRIMAVERA
WebCentral Platform and exports contractual information about the module as well as all
implemented components.

The following information will be implemented in the modules assembly:
Information about the module (name, description, author, version)

All components implemented by this module as well as their attributes
Category types used for the implemented components (optional)

Properties for the approval rules (optional)

vV V ¥V V VY

Mapping information to integrate with the PRIMAVERA ERP (optional)

Some parts of these definitions are required and must follow the specified rules to successfully
integrate the module to the PRIMAVERA WebCentral Platform (for example, information about
the module) - other parts are optional and only need to be considered if necessary.

PRIMAVERA WebCentral SDK

The PRIMAVERA WebCentral SDK's goal is to facilitate the conception, development and
maintenance of customized modules for the PRIMAVERA WebCentral. This product was conceived
especially, to enable partners to customize and extend the WebCentral base (or the model
developed in Application Builder) solution and find an approach to all the specific requirements
and needs for the final client. You should consider PRIMAVERA WebCentral as an open platform
to integrate new modules in a simple and efficient way, and the PRIMAVERA WebCentral SDK is
the key to that. The WebCentral SDK consists of:

» A detailed documentation which outlines the concepts of the PRIMAVERA WebCentral and a
step-by-step introduction on how to build customize modules.

> A set of templates for explaining how to use the most important functionality exposed by the
PRIMAVERA WebCentral (for example: security, approvals and categories).

» A set of tools that are used by PRIMAVERA to develop and deploy customized solutions that
integrates with PRIMAVERA WebCentral.

Requirements

Before starting designing and developing components for the PRIMAVERA WebCentral you should
be aware of the minimum requirements to be met:

Hardware Requirements
e Intel or compatible Pentium 4 (1600 MHz or above)
e 1024 x 768 screen resolution
e 2048 memory of RAM
e 1GB space on the hard disk
Software Requirements
e Microsoft Windows XP, Microsoft Windows 2003 Server or newer
e Microsoft Internet Information Services 6 or newer

e Microsoft Visual Studio 2008 and NET Framework 3.5 SP1

12

PRIMAVERA WebCentral SDK Manual

e Microsoft SQL Server 2000 or newer

Please note that the Internet Information Services (IIS) should be installed before installing the
Microsoft .NET Framework. Also note that if using IIS 7 or newer you must select the following
options from the IIS install components:

Other Resources

Other additional important resources on how to develop Microsoft ASP.NET solutions are:

Microsoft ASP.NET http://www.asp.net/

Microsoft SQL Server http://www.microsoft.com/sql/
Microsoft SQL Server Developer Center http://msdn.microsoft.com/sqlserver/
Microsoft Visual Basic Developer Center http://msdn.microsoft.com/vbasic/
Microsoft Developer Network http://msdn.microsoft.com/

PRIMAVERA WebCentral SDK

Q

The PRIMAVERA WebCentral SDK is installed automatically with PRIMAVERA WebCentral setup.
The installation process copy files to the following folder:

\SDK Assemblies for the WebCentral Platform

Installation Manual - WebCentral

13

http://www.asp.net/
http://www.microsoft.com/sql/
http://msdn.microsoft.com/sqlserver/
http://msdn.microsoft.com/vbasic/
http://msdn.microsoft.com/
http://www.primaverabss.com/pkb/PortalRender.aspx?PageID=e42fbca7-fea6-4a84-a9c2-9a346bdd7433&helptopicID=31063

PRIMAVERA WebCentral SDK Manua

Step-by-Step

This chapter will explain - step by step — how to create a module for the PRIMAVERA WebCentral
Platform. The module we will create during this chapter contains various components and should
serve you as introduction on how to create your own module for your own specific needs.

Step 1 - Creating a new module

Step 1.1 - Creating the base solution

Q

By default, PRIMAVERA WebCentral have available one project, “Primavera.BusinessModel”, that
we can deploy under Application Builder. But we can create more projects and also use the
Application Builder.

Like referred earlier in this manual, a base solution for a module consist of 8 projects (can go up
to 10 if Workflow and ERM connectors are to be included).

Application Builder

Step 1.2 - Signing the Assemblies

All assemblies for the PRIMAVERA WebCentral Platform must be correctly signed using the strong
name (sn.exe) utility from the Visual Studio 2008 Command Prompt. By inserting the attributes
AssemblyKeyFile, AssemblyKeyName e AssemblyDelaySign to the file AssemblyInfo.vb
of each solution’s project, the PRIMAVERA WebCentral SDK Addin already prepared all generated
assemblies to be signed by adding the attributes:

#If DEBUG Then
<Assembly: AssemblyKeyFile ("C:\PRIMAVERA.Public.snk")>
<Assembly: AssemblyDelaySign (True)>
#Else
<Assembly: AssemblyKeyName ("PRIMAVERA")>
<Assembly: AssemblyDelaySign (False)>
#End If

14

http://www.primaverabss.com/pkb/PortalRender.aspx?PageID=e42fbca7-fea6-4a84-a9c2-9a346bdd7433&helptopicID=19051

Q

PRIMAVERA WebCentral SDK Manua

These attributes define the assembly’s signature and identity the manufacturing company. Each
manufacturing company will create its own key file and substitute these values. What we need to
do now, is creating the key file and register it on the development machine.

Create the following steps to create the key file and register it on the development machine:

> Open up the Visual Studio .NET command line prompt (Start | All Programs | Microsoft
Visual Studio 2008 | Visual Studio Tools | Visual Studio 2008 Command Prompt) and
type in the following commands.

sn -k C:\<Company>.Public.Private.snk

sn -p C:\<Company>.Public.Private.snk C:\<Company>.Public.snk

Please substitute <Company> with the name of your company and keep in mind that the
AssemblyKeyFile attribute in the AssemblyInfo.vb files in all projects must match this
filename.

> Register the created key on the development machine by typing in following commands:

sn —-tp C:\<Company>.Public.snk
sn —Vr *, XXXXXXXXXXXX

Where XXXXXXXXXXXX needs to be substituted by the value that resulted from the
execution of the previous command.

The described procedure only needs to be done on the development machine - however you
need to remember that someday you’ll compile a RELEASE version of the developed module and
deploy it to the production server. In this case, you will need to copy the file
C:\<Company>.Public.Private.snk to the production server and install the key using the following
command:

sn -i C:\<Company>.Public.Private.snk <Company>

For more information about signing NET assemblies, please visit http://msdn.microsoft.com

These files are automatically generated by Application Builder.

Step 1.3 - Publishing the new module

Now that we have created the base solution, defined the module’s attributes and created the key
file for signing the assemblies we are ready to test-drive the new module. The new module now
should be compilable and deployable to the PRIMAVERA WebCentral Platform, even though it
does not export any components yet. Anyway, we’d like to see the new module integrated, and
check if everything is fine so far, so we proceed with the following steps:

> Use Visual Studio .NET to compile the whole solution in DEBUG mode.

15

http://msdn.microsoft.com/

Q

PRIMAVERA WebCentral SDK Manual

> Close Visual Studio .NET and run the utility eModuleDeploy, which you can find in the
operating system’s start menu Program Files | PRIMAVERA | WebCentral | SDK |

eModuleDeploy.

> Indicate the location of your module’s Visual Studio solution

» It is recommended to activate always the options Executar IISRESET and Executar
eModulesUpdate to guarantee the success of the operation. The option Limpar GAC

should always be activated if you modified something in the WinUI project. Click on Publicar
when you finished the configuration and to start the deployment process.

ﬁ eModuleDeploy (Enterprise Portals SDK)

Publicacio l Opcies]

Solugdo:

|C: \PEP\Primavera.knowledgeBase \Primavera. KnowledgeBase. sln

Publicar para:

|c: \Inetpub\wwwroot\eprimavera 7y,
[¥ 1. Executar iisreset
Iv 2. Executar eModulesUpdate

¥ 3. Limpar GAC

[4. Abrir Portal URL:

Aguardande... |

aModulaDaploy v7.0.2580 Publicar | Cancelar |

» After the module has been deployed, run the PRIMAVERA WebCentral Site Administrator and

launch the Portal Designer to check that the new component is available, even though, it

does not have any components yet.

ﬂa Hovo Componente

Tipos de Componentes : |Pub|ica;éo M
Mddulos Componentes:
= @ Mddulos Disponiveis Componentes do Médulo

Novo Componente | Importaco de Componentes

(@ Primavera.ERP.AccountReceivables

i@ Primavera.ERP.Inventory

@ Primavera.ERP.Sales

21 Primavera.KnowledgeBase

@ Primavera,Platform. Administrator
& Primavera.Platform.Operational
[Primavera,Platform, SiteBuilder

Primavera KnowledgeBase |

Nome: |

Confirmar] [Cancelar] [Ajuda]

The deployment of a module will execute the following steps:

> Execute a restart of the Microsoft Internet Information Service (iisreset), which releases
resources that might cause the deployment process to fail.

16

PRIMAVERA WebCentral SDK Manua

> Copy all module’s assembly files, as well as *.aspx and *.ascx files to the PRIMAVERA's
WebCentral installation folder (in our example, they will be copied to the subfolder
Modules/Primavera.KnowledgeBase).

» Register the module information in the PRIMAVERA WebCentral database.

» Clean up the global assembly download cache - important for the WinUI assemblies which
reside in this cache.

Step 2 - Creating a new component

In this chapter we will create two new components for our module Primavera.KnowledgeBase.
These two new components will be created as web user controls, one for listing all existing
articles and one for viewing the details for a selected article.

Step 2.1 - Implementing the Business Entity

A business entity (BE) encapsulates all attributes of entity, in this case an article for our
KnowledgeBase. A business entity only contains private attributes and public properties to gain
access to the private attributes. This class will be utilized in all modules’ project to store and
transport information about an article of the KnowledgeBase.

» Add a new class named Article to the project Primavera.KnowledgeBase.Entities

» Implement the business entity class Article as shown in Appendix 1 [Page 110]

The class diagram on the right is the graphical representation of the class

we just implemented. You should keep in mind that all business entities f:u .
should inherit from the BusinessEntityBase class, which is provided by
the PRIMAVERA WebCentral Platform. The PRIMAVERA WebCentral Platform 9;‘;”; e
also will take care of the business entities’ serialization and deserialization J« m_body
to and from the database. The parameters of the BusinessEntityAttribute j: :—f‘nf:;e
will specify name of the SQL Server table and a unique identifier for the _y m:s.ummary
business entity. The code fragment Bff:,p:;itl;le
7 Author
. 5 Body
<Serializable (), BusinessEntityAttribute ("KNB Articles", "..")> ol Oate
Public Class Article § IST;QH_IEW
Inherits BusinessEntityBase | & Title

will tell the PRIMAVERA WebCentral Platform to serialize the entities data to a SQL table named
KNB_Articles, which we will create later on in this chapter. Also, you already specified the
property/table column mapping. The BusinessEntityField attribute, which you can find in front
of a properties declaration, will tell the PRIMAVERA WebCentral Platform in which SQL Server
column the data should be stored. Take for example the Author property:

<BusinessEntityField("Author")>
Public Property Author() As String
Get
Return m_author
End Get
Set (ByVal Value As String)

17

PRIMAVERA WebCentral SDK Manua

m_author = Value
End Set

End Property

The BusinessEntityField attribute’s value Author will inform the PRIMAVERA WebCentral
Platform to serialize the entities value to the Author column of the KNB_Articles table.

Step 2.2 - Implementing the Data Services

The Data Services project consists exclusively of classes that implement the data access to the
SQL Server database and are called only by the Business Server layer. We'll implement all
functionality that is needed to realize the data access, such as load, save and remove records
from a table in the database. There isn’t too much to do, though, as we inherit most of the
functionality from the base class DataServiceBase.

» Add a new class called Article to the Primavera.KnowledgeBase.Data project.

» Implement the new class Article using the following code

Imports Primavera.Platform.Engine.Data

Imports Primavera.KnowledgeBase.Entities

<DataServiceAttribute (GetType (Entities.Article))>
Public Class Articles

Inherits DataServiceBase

End Class

As you see, there’s not too much implementation to do here. All code that is necessary for the
standard data access is already implemented in the base class DataService. However, if you
need to customize the behaviour, you can use standard object oriented principles like overriding
methods of the base class.

Step 2.3 - Implementing the Business Service

The business services (BS) implement the components business rules and serves as intermediate
layer between user interface and data service layer. Here we will place code that is based on the
data service layer and business entities layer. Its methods will be called from the two user
interface layer - WebUI and WinUI.

» Add a new class called Articles to the Primavera.KnowledgeBase.Business project.
> Implement the business entity class Article as shown in Appendix 2 [Page 112].

> Analyse the code.

The next thing to do is to create a proxy class, which will provide a central access point to all
business services objects. That way, the user interface code won't need to worry about declaring
and instantiate an object from type Article. They simply call a static method which devolves a
correctly instantiated Article object.

> Add a new class called Proxy to the Primavera.KnowledgeBase.Business project.

18

PRIMAVERA WebCentral SDK Manua

> Implement the new class Proxy using the following code

Public Class Proxy

Inherits Primavera.Platform.Engine.Business.BusinessEngineBase

Public ReadOnly Property ModuleID() As Guid
Get
Return New Guid("{5373dc00-2326-4ed6-b72f-aa5ead4cdcdl}")
End Get

End Property

Public Shared Function Articles() As Business.Articles
Return New Business.Articles

End Function

End Class

Step 2.4 - Publishing the components to the Platform

The next modifications are necessary to publish the modules new components to the PRIMAVERA
WebCentral Platform. The PRIMAVERA WebCentral Platform will call objects from the
Primavera.KnowledgeBase.Modules project to retrieve information about the components
this module provides. We will need to implement the necessary code for that the Platform
recognizes the components we’ll provide.

» Edit the file ComponentsIds.vb, which resides in the folder Components in the project
Primavera.KnowledgeBase.Modules. As, later on, we will create two new components for
the new module, we insert the implementation of two new properties:

Public Shared ReadOnly Property KnowledgeBaseArticle() As Guid
Get
Return New Guid ("{B6B669F2-35B2-43al-A03D-7325EEB2B082}")
End Get

End Property

Public Shared ReadOnly Property KnowledgeBaseArticlelList () As Guid
Get
Return New Guid ("{9763FE71-A201-42f6-BFF9-01E9A3449AE0}")
End Get

End Property

» Edit the file Components.vb, which also resides in the folder Components in the project
Primavera.KnowledgeBase.Modules.

» Locate the method List. Here we will need to implement the code necessary to inform the
PRIMAVERA WebCentral Platform about the existence of our 2 new components:

19

PRIMAVERA WebCentral SDK Manua

Public Function List (ByVal ComponentType As ComponentType) As Servicelist

Implements IComponents.List

Dim objCol As New ServicelList

If (ComponentType = ComponentType.Administration) Then

ElseIf ComponentType = ComponentType.Publishing Then
objCol.Add (ComponentsIDs.KnowledgeBaseArticle, "Article Detail")
objCol.Add (ComponentsIDs.KnowledgeBaseArticleList, "Article List")
End If

Return objCol

End Function

» The List method’s purpose is only to inform the PRIMAVERA WebCentral Platform about the
existence of the 2 new components. Further details about each component will be introduced
in the method Edit, which resides in the same file Components.vb. Modify this method the
following way:

Public Function Edit (ByVal WinContext As WinContext, ByVal ComponentID As
System.Guid)

As Component Implements IComponents.Edit

Dim objComp As New Component

If ComponentID.Equals (ComponentsIDs.KnowledgeBaseArticle) Then

objComp.Name = "Article Detail"
objComp.Description = "Component for showing a knowledge base article"
objComp.ComponentClass = "Article"

objComp.RequiresEnterprise = False
objComp.IconIndex = 0
objComp.BackgroundOpaque = True
objComp.AllowsFrame = True

objComp.ComponentSecurity = False

ElseIf ComponentID.Equals (ComponentsIDs.KnowledgeBaseArticleList) Then

objComp.Name = "Article List"
objComp.Description = "Component for a list of articles"
objComp.ComponentClass = "ArticleList"

objComp.RequiresEnterprise = False
objComp.IconIndex = 0
objComp.BackgroundOpaque = True
objComp.AllowsFrame = True

objComp.ComponentSecurity = False

End If

20

PRIMAVERA WebCentral SDK Manua

objComp.ID = ComponentID

Return objComp

End Function

As you can imagine, the PRIMAVERA WebCentral Platform will call this method to initialize the
components properties, whenever a component is placed on some webpage. In this method you
will define if the component requires a connection to the Primavera ERP, if the security system
should be supported, which icon should be displayed for the component, etc.

@mm

Special attention while defining the value for the ComponentClass property of the component’s
object: The value of this property will determine the name of the web user control (ascx), which
will be used by the PRIMAVERA WebCentral Platform to show the component. In this example,
we will create web user controls named Article.ascx and ArticleList.ascx. The specified values
for these properties need to match the names of the web user control class.

Step 2.5 - The component’s user control

Until now, we have implemented the business entity, the business service, the data service layer
as well as the code necessary for the PRIMAVERA WebCentral Platform to recognize the new
component. Now we'll do the part that the actual user will see: The web-based user interface.

>

In the project Primavera.KnowledgeBase.WebUI, create a new folder named
Components. In this new folder, create a new web user control and name it Article.ascx.
Change the designer view to HTML view and implement the web user control as shown in
appendix 3 [page 115]

Open the code behind file for the web user control Article.ascx and implement the code as
shown in appendix 4 [page 116].

Create another web user control in the same folder, named ArticleList.ascx. Change the
designer to HTML and implement the web user control as shown in appendix 5 [page 118].

Open the code behind file for the web user control ArticleList.ascx and implement the code
as shown in appendix 6 [page 119]. Have special attention while implementing the method
GetDetailPageUrl:

Public Function GetDetailPageUrl (ByVal articleId As Guid) As String
Dim guidCompArticleDetail As Guid = New Guid ("B6B669F2-35B2-43al1-A03D-

7325EEB2B082")

Return String.Format ("ComponentRender.aspx?ComponentID={0}&ArticleID={1}",

guidCompArticleDetail, articleId)

End Function

The above method is called to generate an URL to navigate to the article detail component
while browsing the article list. The static identifier specified for the local variable
guidCompArticleDetail needs to match the identifier for the Article component. You can
copy and paste this identifier from the file ComponentslIds in the
Primavera.KnowledgeBase.Modules project.

21

PRIMAVERA WebCentral SDK Manual

Step 2.6 — Compile, deploy and test the modifications made

To see the final result of the steps described in these last paragraphs we will need to compile the
new module and deploy it to the PRIMAVERA WebCentral Platform.

>
>

» Change to preview mode and you should see a list of two articles, which we created

Use the Visual Studio 2008 IDE to compile the solution in DEBUG mode.

Run the eModuleDeploy utility, which you will find in the Tools folder of the PRIMAVERA
WebCentral SDK.

Indicate the complete filename of our module’s solution and start the deployment process.

The current solution already will try to read articles for the Knowledge Base from the
database which was indicated while initializing the WebCentral Instance (ePrimavera by
default). What we will need to do now, is creating the table structure and inserting some
sample data to these tables. Please open up SQL Query Analyzer (or any other tool that
permits the execution of SQL commands) and enter the SQL script you can find in Appendix
7 [page 120]. Execute this script on the WebCentral Database.

Open up the Site Administrator application and navigate to the Portal Designer. Double-click
on the Intranet portal. Create a new folder called KnowledgeBase and a new page called
Article List. Place the new component Article List on this new page.

EE Hovo Componente

MNovo Companents | Importacio de Componentes

Tipos de Componentes |Publicac50 M

Mddulos Componentes:

=g

Mddulos Disponiveis
({8l Primavera.ERP. AccountReceivables

@ Primavera.ERP.HRInfo
-f8) Primavera.ERP.Inventory
-f8) Primavera,ERP.Sales

(i@ Primavera.KnowledgeBase
@ Primavera,Platform.Administrator

~[{8) Primavera.Platform.Operational
-@ Primavera.Platform.SiteBuilder

Componentes do Madulo

Artcle Detail
Fartice List

Component for a list of artides

MNome:

Artide List4

Confirmar] [Cancelar

Ajuda

|

previously using the SQL scripts.

22

PRIMAVERA WebCentral SDK Manual

Ficheira Portal

Bofx BEPE: DEEE

[Designer [Preview |

= G manet
2 Home
{2 Desenvalvimento
2 Comerdal
) Marketing
5 Administrativo

PORGAL DO COLAEORADOR

59 Recursos Humanos
{2 Organizacio
5 Portais

Home \ Knowledge Base | Knowledge Base

Home Desenvolvimento Comercial Marketing Administrativo Recursos Humanos Organizagdo Portais Knowledge Base

Login

,?th %

i

& Fevereira 2007

(£ Knowledge Base
@Y knowledge Base
i Propriedades do Portal

Knowledge Base

Home

Desenvolvendo um Madulo
Jim Buttan

wolvimento

Come:
Marketing

.;-:i.mmlstl'ath‘:l Integracic

Laura Jones
Discutindo a integracdo .
06-02-2007 17:45:39

Recur Humanos
Organizagio
Portais
[E——

Knowledge Base

Poered By)
h:ﬂ"!_- a

PORGAL D0 COLARORADOR

= \ i i B,
4 Copyright © BRIMAVERA Businsss Softwars Selurians, .. Tedos os diraitos resarvados B
Utilizador:admin Portal:Intranet Knowledge Base
» Click on the link of one listed article and you should see the article’s details.
Ficheiro Portal
B x BR PE %]
Designer Prewew}
Egi";m‘e O S | et |

2 Desenvalvimento
5 Comerdial
B Marketing
{2 Administrativo
2 Recursos Humanos
3 Crganizagio
B Portais
B Knowledge Base
+- 484 Knowledge Base
) Propriedades co Portal

Home Desenvolvimento Comercial Marketing Administrativo Recur

Jim Button

PORGAL D0 COLABORADOR

Desenvolvendo um Médulo

This article describes ...

Para desenvalver um Médulo PEP & imprescindivel comegar por uma leitura adequada

—d =

& Fevereiro 2007

sos Humanos Organizagdo Portais Knowledge Base

. Copyright & PRIMAVERA Businass Softwars Selutions, 5.4, Tadas as dirsitos rase

Utilizador:admin Portal:Intranet Knowledge Base

Step 3 - The Article Administration Component

This chapter will show how to implement an administration component for the KnowledgeBase
module. It will demand typing quite a lot code, both HTML as well as Visual Basic.NET, but soon
you will see that this example introduces you to some important concepts and shows you how to
reuse some of the controls that are provided by the PRIMAVERA WebCentral Platform.

Let’s recapitulate the requirements for this control:

» A grid control will show all already existing articles

23

PRIMAVERA WebCentral SDK Manua

» It must be possible to insert new records as well as edit, remove and clone existing records

» It must be possible to edit all articles’ properties, such as author, title, publishing date,
image and the articles body.

All these requirements should be split into two user controls: One user control handles the
master grid view, which shows all existing records, and one user control handles the articles’
details. In fact, this way we can place the details user control into the master grid user control,
and simply hide/ show the controls depending on the current mode. For example: If the
administration control is in mode consultation, the master grid control will be shown and the
details control will be hidden. If the user wishes to edit an existing record, the master grid
control will be hidden, and the details control will be correctly initialized and shown to the user.

Step 3.1 - Publishing the Article Administration Component

The administration component, which we will try to implement in this chapter, is a regular
component, which is published the same way we already did before. Just with one little
difference. As you see in the component selection dialog, in the Portal Designer, PRIMAVERA
WebCentral differentiate between Publishing and Administration components. We now are going
to publish an administration component:

» Open the file ComponentsIds.vb, which you can find in the folder Components in the
project Primavera.KnowledgeBase.Modules.

» Create a new shared, read-only property, which uniquely defines the new component:

Public Shared ReadOnly Property KnowledgeBaseArticleAdmin () As Guid
Get
Return New Guid("{079DD2BA-F511-40a5-9360-2154DD8D6F27}")
End Get

End Property

> Open the file Components.vb, which also resides in the folder Components in the project
Primavera.KnowledgeBase.Modules.

» Complete the method List, which we already edited before, to support the new
administration component:

Dim objCol As New ServicelList
If (ComponentType = ComponentType.Administration) Then
objCol.Add (ComponentsIDs.KnowledgeBaseArticleAdmin, "Article

Administration")

ElseIf ComponentType = ComponentType.Publishing Then
objCol.Add (ComponentsIDs.KnowledgeBaseArticle, "Article Detail")
objCol.Add (ComponentsIDs.KnowledgeBaseArticleList, "Article List")
End If

» We now need to implement the component’s detailed attributes. The method Edit is the right
place to do so. Insert the following code in the ElseIf path to the already existing if control
path.

ElseIf ComponentID.Equals (ComponentsIDs.KnowledgeBaseArticleAdmin) Then

objComp.Name = "Article Administration"

24

PRIMAVERA WebCentral SDK Manua

objComp.Description = "Component for Article Administration"
objComp.ComponentClass = "ArticleAdmin"
objComp.RequiresEnterprise = False

objComp.IconIndex = 0

objComp.BackgroundOpaque = True

objComp.AllowsFrame = True

objComp.ComponentSecurity = False

Now we already have exported the new component, which does not exist yet, but we're getting
there...

Step 3.2 - Defining the Master Grid’s Data Source

Before we begin with defining the user interface for the master grid control and the articles’
detail control, let’s define on what should appear in the master’s data grid. The PRIMAVERA
WebCentral Platform provides so called table filters for this purpose. Table Filters are

implemented in the Modules project, and define which columns should appear in a data grid, as
well as how they should be sorted and filtered. To implement a table filter:

>

Open the file TableFiltersIDs.vb, which you can find in the folder TableFilters in the
project Primavera.KnowledgeBase.Modules.

Create a new shared, read-only property, which uniquely defines the new table filter:

Public Shared ReadOnly Property ArticleTableFilter () As Guid

Get

Return New Guid("25662350-E994-45dd-9C75-340AA517357D")

End Get

End Property

Open the file TableFilters.vb, which also resides in the folder TableFilters in the project
Primavera.KnowledgeBase.Modules.

We now need to implement the table filter’s detailed attributes. This is done in the method
Edit, which is called by the PRIMAVERA WebCentral Platform. Take a look at the following
code segment and its code remarks:

Public Function Edit (ByVal TableFilterID As Guid) As TableFilter Implements

ITableFilters.Edit

Dim tableFilter As TableFilter = Nothing

If TableFilterID.Equals(TableFiltersIDs.ArticleTableFilter) Then

tableFilter = New TableFilter

'define the master query and the field which will be used as primary key
tableFilter.DomainQuery = "SELECT * FROM KNB Articles"
tableFilter.ReturnFields.Add ("ID")

'define a filter which configures the table filter grid
Dim objPredefFilter As New PredefinedFilter ()
objPredefFilter.ID = New Guid("{41229DD9-0CC3-479f-A4BC-0B5A03EB7D90}")

objPredefFilter.Name = "<All Articles>"

25

PRIMAVERA WebCentral SDK Manua

'define the columns which will appear in the table filter grid
objPredefFilter.Fields.Add ("Author")
objPredefFilter.Fields.Add ("Date")
objPredefFilter.WhereClause = ""
objPredefFilter.FieldsOrder.Add (" [Date] DESC")
tableFilter.PredefinedFilters.Add (objPredefFilter)
tableFilter.AllowCloning = True

End If

Return tableFilter

End Function

> Implement the method like it is written above. We've now implemented a new table filter
which will be bound to the master grid, showing the column Title, Author and Date and
sorting all existing records descending by the column date.

Step 3.3 - Creating the Administration Detail User Control

The administration detail user control will be placed into the PRIMAVERA WebCentral
Administration component. When a user firstly accesses the administration component, the
administration detail user control will be hidden. It will only become visible if it is needed to show
an existing items detail (edit) or when the user wishes to insert a new item (insertion).

The ASCX file does not need much explanation. Appendix 8 [Page 121] will show you the
complete ASCX file content we’ll need to complete this step. Just some labels, input controls and
styles, to edit or insert an article from the KnowledgeBase. However, in the ASCX’s code you will
also find some extraordinary controls: The HTML editor as well as the image selection control.
The web based HTML editor will permit to format the KnowledgeBase articles body. This is done
through some JavaScript, which formats a plain textbox on the client side to a full-blown HTML
editor. The image selection is done using two user controls from the PRIMAVERA WebCentral
Platform: WebImageSelectionPopUpButton and WebImageSelection. The button serves to
show the image selection user control and should be placed on the right side of the textbox
which shows the relative path to the image selected. Whenever the user clicks on the image
selection button, the KnowledgeBase item details are hidden and the image selection user control
is shown.

» Add a new Web User Control, called ArticleAdminDetail.ascx to the folder Components in
the Primavera.KnowledgeBase.WebUI project.

» Change the Visual Studio 2008 designer to the source view.

» Implement the ASCX file like shown in Appendix 8 [Page 121].

The code-behind file is more interesting, as it shows how to use PRIMAVERA WebCentral
contextual information to load, edit and insert a record using the module’s business service layer.
We will now analyze the code-behind code step-by-step; you also can see the complete code-
behind in Appendix 9 [Page 125].

> Open the user control’s code behind file ArticleAdminDetail.ascx.vb

» As this user control not necessarily needs to be recognized directly by the PRIMAVERA
WebCentral Platform, we won’t need to change the classes’ base class to
Platform.WebUI.WebComponentBase, like we did before. This component embeds like
normal ASP.NET user controls in other web pages or other user controls.

26

PRIMAVERA WebCentral SDK Manua

> We need to expose two events for the user control which will host the administration details.
These events are triggered whenever the administration details user control needs to be
hidden, say, when the user confirmed the modifications or he wants to cancel the operation.
We declare these two events at the start of the classes implementation:

'declare events to signal the parent user control or form that the user clicked
'on the back button or the confirm button. the parent user control is responsible
'for reacting the correct way on these events.

Public Event BackButtonClicked()

Public Event ArticleSaved()

> We placed some user controls in the ASCX file, which are not known to the Visual Studio IDE
(as they reside in the PRIMAVERA WebCentral installation directory). By default, the Visual
Studio IDE declares these user controls as WebControls.UserControl in the designer file,
but as we need to access some of the controls properties and methods, it's a better way to
declare these user controls with the correct type in the code-behind file:

'declare user controls referenced from the PRIMAVERA WebCentral Platform

'here in the code behind file, using the exact variable name as stated in the ascx
Protected WithEvents WebImageSelectionPopUpButtonl

As Primavera.Platform.WebUI.WebImageSelectionPopUpButton

Protected WithEvents controlImageSelection _

As Primavera.Platform.WebUI.WebImageSelection

» We also need some private variables to store the contextual information, as well as the
current edit mode (insertion or modification). These private attributes are only accessible
using the public properties which we are going to implement next.

'private attributes, which are initialized by the parent user control using the
'public properties this class exposes
Private webContext As Primavera.Platform.WebUI.WebContext

Private visualizationMode As VisualizationMode

» The WebContext object contains essential information about the portals current context,
such as which user is currently logged in, which organization, which template is being used
as well as the database context, which we use to access the database. The Mode variable will
be initialized by the parent form to let us now if we should insert a new record or edit an
existing. It is good practise to avoid direct access to the classes attributes. These accesses
should be realized using properties instead. We’ll now implement the two properties to
access the private members that we declared before:

'<summary>

' This property allows access to vital context information, that are necessary to

' implement access to the system's database (such as information about user,

' organization, portal, etc). This property needs to be initialized from the
parent

' user control.

'</summary>

Public Property WebContext () As Primavera.Platform.WebUI.WebContext

Get

27

PRIMAVERA WebCentral SDK Manua

Return webContext

End Get

Set (ByVal Value As Primavera.Platform.WebUI.WebContext)
_webContext = Value

End Set

End Property

'<summary>

' This property allows access to the edit mode; this control needs to know if we

Elit@

' currently editing an existing, or inserting a new record. This property needs to

' Dbe initialized from the parent user control.
'</summary>
Public Property Mode () As VisualizationMode
Get
Return _visualizationMode
End Get
Set (ByVal Value As VisualizationMode)
_visualizationMode = Value
Select Case visualizationMode
Case VisualizationMode.Insertion
CreateBusinessEntity ()
Case VisualizationMode.Edition
EditBusinessEntity ()
End Select
ShowBusinessEntity ()
End Set

End Property 'Mode

» Whenever the administration detail user control enters in edit mode, it will need to know the
unique identifier of the article to edit. The parent form will initialize this property when the user
clicks on the Edit button of the grid’s toolbar.

'<summary>

' The parent user control needs to initialize this property whenever the user is

' editing an existing record. This property needs to be initialized with the

' primary key of the record to be edited.
'</summary>
Public Property ArticleId() As Guid
Get
Return CType (Session ("ArticleId"), System.Guid)
End Get
Set (ByVal Value As System.Guid)
Session ("ArticleId") = Value
End Set

End Property

> The following property will be used to persist an object of the business entity. As a web page itself
is stateless, we will need to store it in the Session object. The Session object will be cleaned up by

28

PRIMAVERA WebCentral SDK Manua

the method ClearSessionObjects, whenever the user leaves the article detail administration
form.

'<summary>

' The following property persists an business entity object of the record that is
Al

currently edited. This property is for internal use only.

'</summary>

Private Property BusinessEntity () As Entities.Article

Get

If Not Session("ArticleBEO") Is Nothing Then
Return CType (Session("ArticleBEO"), Entities.Article)

End If
Return Nothing

End Get

Set (ByVal Value As Entities.Article)
Session ("ArticleBEO") = Value

End Set
End Property

> As you saw in the ASCX file, there are some calls to functions in the code-behind to initialize the
HTML editor. These functions are used to reference the textbox, which will be used as HTML editor

as well as referencing the correct JavaScript file, which can be found on the web server. These
helper function will be implemented as follows:

'<summary>

v

The following method will be called in the ASCX file to retrieve an HTML valid

v

identifier to reference the textbox control used as HTML editor (see also ASCX)

'</summary>

Protected Function ID2Name (ByVal ID As String) As String

Return System.Text.RegularExpressions.Regex.Replace (ID, " (?<tok>[a-zA-Z0-
9]+)_", "${tok}:")

End Function 'ID2Name

'<summary>

v

The following method will be called to build a correct portal URL, for including

JavaScript files for the HTML editor (see also ASCX)

'</summary>

Protected Function GetCurrentPortalURL (ByVal Request As HttpRequest) As String

Dim currentPortalUrl As String = String.Format ("http://{0}/{1}",
Request.Url.Host, Request.Url.Segments (1))

Return currentPortalUrl.TrimEnd ("/")

End Function 'GetCurrentPortalURL

> The following method will be called whenever the user decides to confirm the current entity
settings or to cancel the current operation and go back to the administration grid view. This
method will remove the used objects which are stored in the session object.

29

PRIMAVERA WebCentral SDK Manua

'<summary>

' The following method will cleanup the session object which are used by this
' user control. You should call this method whenever the in the session state
' persisted objects are no longer necessary.

'</summary>

Private Sub ClearSessionObjects ()

Session.Remove ("ArticleId")

Session.Remove ("ArticleBEO")

End Sub 'ClearSessionObjects

» Next we need a method that is called whenever it is necessary to initialize the user control with the
values currently stored in our business entity object. We also have to initialize the image selection
control with the relative image path.

'<summary>

' The following method will be called whenever it is necessary to initialize

' the user control with values from the currently loaded business entity. This
' is basically everytime the case, when a user edits an existing record.
'</summary>

Private Sub ShowBusinessEntity ()

txtAutor.Text = Me.BusinessEntity.Author
txtArticle.Text = Me.BusinessEntity.Body
txtDate.Value = Me.BusinessEntity.Date
txtTitle.Text = Me.BusinessEntity.Title

txtImage.Text = Me.BusinessEntity.Image

'update image selection control
WebImageSelectionPopUpButtonl.ImageHtml = Me.BusinessEntity.Image

WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

End Sub 'ShowBusinessEntity

» The following method is called whenever the user needs to insert a new record to the
KnowledgeBase articles. It will initialize a business entity object with default values.
'<summary>
' The following method will be called whenever the user wishes to create
' a new record. This method initializes a new business entity object.
'</summary>

Private Sub CreateBusinessEntity ()

'initialize new business entity

Dim businessEntity As New Entities.Article
businessEntity.ID = Guid.NewGuid ()
businessEntity.Author = WebContext.User.UserName
businessEntity.Date = DateTime.Now
businessEntity.Image = String.Empty
businessEntity.Title = String.Empty

30

PRIMAVERA WebCentral SDK Manua

businessEntity.Body = String.Empty

'initialize image button
WebImageSelectionPopUpButtonl.ImageHtml = businessEntity.Image

WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

Me.BusinessEntity = businessEntity

End Sub 'CreateBusinessEntity

Once the user clicked on the Edit button of the toolbar provided by the WebTableFilterGrid user
control, the parent will initialize the details ArticleId property and set the mode to Edition. This is
the place where the following method is called to load the business entity object with the values
from database:

'<summary>

' The following method will be called to initialize the internally used business

' entity object for being edited. It will load the specified record from database;
' the record's primary key needs to be set before.

'</summary>

Private Sub EditBusinessEntity ()

Dim businessLayer As New Business.Articles

Me.BusinessEntity = businesslayer.Edit (WebContext.User.EngineContext,

Me.ArticleId)

'initialize image button
WebImageSelectionPopUpButtonl.ImageHtml = Me.BusinessEntity.Image

WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

End Sub 'EditBusinessEntity

Whenever the user clicked on the Confirm button, all modifications to the business entity need to
be written to database. We do not need to care about if we are editing or inserting a record,
because the business entity has an internal attribute that indicates if the object was loaded from
database or not.

'<summary>

' The following method will be called whenever it is necessary to write all

changes

' down to database. This method will update the existing record, which was edited,

' inserts a new record to the database.
'</summary>

Private Sub UpdateBusinessEntity ()

Me.BusinessEntity.Author = txtAutor.Text
Me.BusinessEntity.Title = txtTitle.Text
Me.BusinessEntity.Body = txtArticle.Text
Me.BusinessEntity.Date = txtDate.Value

Me.BusinessEntity.Image = txtImage.Text

31

PRIMAVERA WebCentral SDK Manua

Dim businessLayer As New Business.Articles

businessLayer.Update (WebContext.User.EngineContext, Me.BusinessEntity)

End Sub 'UpdateBusinessEntity

> The Page_Load event handler method will be called whenever the client requests a web
page that contains this user control - so that’s a good place to do some initialization. The
button that already handles the image selection treats the showing/ hiding of the panels, it
just needs to know a reference to the panels controls.
'<summary>
' The following event handler will be called whenever the page loads; place all
' idnitialization code here.
'</summary>
Protected Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

Me.WebImageSelectionPopUpButtonl.PanelMaster = Me.panelArticleDetails

Me.WebImageSelectionPopUpButtonl.PanelDetail = Me.panellImageSelection

Me.WebImageSelectionPopUpButtonl.WebImageSelectionControl =
Me.controlImageSelection

If Not Me.IsPostBack Then

Me.WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

End Sub 'Page Load

» The following event handler will be called whenever the user clicked on the Back button. In this
case we will need to remove temporarily used objects from the Session object and raise the event
that signals the parent form to hide the details panel and show the grid panel.

'<summary>
' The following event handler will be called whenever the user clicked on the

"Back"

' button. No changes should be written down to database; the parent will receive

an

' event and should hide this details control and show the table filter grid.

'</summary>
Private Sub cmdBack Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles btnBack.Click

RaiseEvent BackButtonClicked ()

ClearSessionObjects ()

End Sub 'cmdBack Click

» The following event handler will be called whenever the user clicked the Confirm button. We will
need to save all modifications on the business entity to database and raise the event that signals
the parent form to hide the details panel and show the grid panel.

'<summary>
' The following event handler will be called whenever the user clicked on the

"Confirm"

32

PRIMAVERA WebCentral SDK Manua

' Dbutton. All changes should be written down to database; ; the parent will

receive an
' event and should hide this details control and show the table filter grid.

'</summary>

Private Sub cmdSave Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnConfirm.Click

Me.UpdateBusinessEntity ()
RaiseEvent ArticleSaved/()

ClearSessionObjects ()

End Sub 'cmdSave Click

» Whenever the user selected an image for the article, the following event handler will be raised. We
will need to update the business entity as well as the textbox with the modified path to the
selected image.

'<summary>

' The following event handler will be called whenever the user confirmed an image

' in the image selection control. We will need to update the business entities

' 1image property with the new value.

'</summary>

Private Sub WebImageSelectionPopUpButtonl ImageSelected(ByVal configuration
As Platform.WebUI.ImageConfiguration) Handles

WebImageSelectionPopUpButtonl.ImageSelected

If Me.BusinessEntity Is Nothing Then _
Exit Sub
Me.BusinessEntity.Image = configuration.ImageHtml

txtImage.Text = configuration.ImageHtml

End Sub 'WebImageSelectionPopUpButtonl ImageSelected

That’s all for the administration details user control, which supported editing and inserting new
articles for the KnowledgeBase. As already said before, this user control will be placed on the
main administration user control, which contains the list of all existing KnowledgeBase articles,
as well as a toolbar that allows to edit/insert/remove and clone records. We also could have
implemented the details user control’s code directly to the main administration user control, but
that would have been too much confusion to handle and maintain. In the next step we will
implement the main administration user control.

Step 3.4 - Creating the Administration User Control

We already defined the table filter which we would like to use for our administration data grid as
well as published our - until now - not existing component; now it's time to get our hands dirty
and implement the administration user control. This user control will actually also encapsulate
the articles’ detail user control, and show/hide it in dependency of the current state. But let’s
start with the administration user control’s HTML file:

> Add a new Web User Control, called ArticleAdmin.ascx to the folder Components in the
Primavera.KnowledgeBase.WebUI project.

» Change the Visual Studio 2008 designer to the source view

33

PRIMAVERA WebCentral SDK Manua

» We will reuse various user controls that are provided by the PRIMAVERA WebCentral
Platform; so let’s first register the components we need (WebGridMessage and

WebGridTableFilter) in the files header, using the Register tag: Below the Control tag,

insert the following lines:

<%@ Register TagPrefix="WebC" TagName="WebGridTableFilter"
Src="../Primavera.Platform/WebGridTableFilter.ascx" %>

<%@ Register TagPrefix="WebC" TagName="WebGridMessage"
Src="../Primavera.Platform/WebGridMessage.ascx" %>

<%Q@ Register Src="ArticleAdminDetail.ascx"

TagName="ArticleAdminDetail" TagPrefix="WebC" %>

» The next part of the ASCX file will be the panel that contains the data grid. We will

encapsulate the data grid into a panel, so that we easily can show/hide it depending on the

current edit mode.

<!-- the following user control will be used to issue messages to the user -->

<WebC:webgridmessage id="messageBox" runat="server"
visible="False"></WebC:webgridmessage>

<asp:Panel ID="panelArticleMaster" Visible="True" runat=server>

<!-- this panel will handle the grid that shows all available business entities

to

the user. this "master" grid also implements common funcionalities like
insert

new item, edit/clone and remove the current item. this panel will be
hidden by

the code behind whenever the details (ArticleAdminDetail) needs to be
shown. -->

<table id="tableArticles" runat="server" cellspacing="0" cellpadding="0"
width="100%" border="0">
<tr>
<td>
<WebC:webgridtablefilter id="articleAdminMasterGrid" visible="True"
runat="server" width="100%" height="20px" DoPagination="True"
AllowDefaultPaging="True" AllowDefaultSorting="True"
AllowSelectingRecordsPerPage="True"
DefaultPagingMode="NumericPages"
DefaultPagingPosition="Top" PageSize="10" PageSizeIndex="0">
</WebC:webgridtablefilter>
</td>
</tr>
</table>

</asp:Panel>

> Under this data grid panel, we will prepare another panel which will encapsulate the
KnowledgeBase item details.

<asp:Panel ID="panelArticleDetails" Visible="False" runat=server>

<!-- this panel will handle the current entities details. it is shown whenever the

user edits the currently selected or inserts a new record. we could have done

this also in a separate aspx file. -->

34

PRIMAVERA WebCentral SDK Manual

<table>
<tr>
<td>
<WebC:ArticleAdminDetail id="articleAdminEntityDetails" runat="server">
</WebC:ArticleAdminDetail></td>
</td>
</tr>
</table>

</asp:Panel>

When finished, the user controls ASCX file should something look like the listing showed in
Appendix 10 [Page 131]. Please compare your code with this listing and make sure everything’s
alright before we proceed with the code-behind file. You might get a warning issued from the
Visual Studio IDE, telling you that the path in the Register tags, at the start of the file, are not
valid. That's ok, because it already meets the correct directory structure in the production
environment.

Now let’s start with the code-behind file. The following steps will explain the sequence of changes
that we are going to make in the code-behind file. If you have doubts on how it's done correctly,
please refer to Appendix 11 [Page 133] where you can find the complete code-behind for this
user control.

»

>

Open the user control’s code behind file ArticleAdmin.ascx.vb

At the top of the file, import the namespaces that we are going to use in the code.

Imports Primavera.Platform.WebUI

Imports Primavera.Platform.WebUI.Controls

The administration user control will encapsulate the list of existing records, as well as show
the article details whenever the user is inserting a new or editing an existing record. The
user control needs to persist the current editing mode (Consultation will show the data grid
with existing records, Insertion and Edition will show the article detail user control).
Therefore, we will need to declare a new enumeration type, which will be used by the
administration user control, as well as the administration detail control. At the top of the file,
between the Imports and the class declaration, insert following declaration:

Public Enum VisualizationMode
Consultation
Insertion
Edition

End Enum

As we are implementing a new component for the PRIMAVERA WebCentral Platform we need
to change the user control’s base class:

Partial Public Class ArticleAdmin

Inherits Primavera.Platform.WebUI.WebComponentBase

We placed some user controls in the ASCX file, which are not known to the Visual Studio IDE.
By default, the Visual Studio IDE declares these user controls as WebControls.UserControl
in the designer file, but as we need to access some of the controls properties and methods,
it's a better way to declare these user controls with the correct type in the code-behind file:

'declare user controls referenced from the PRIMAVERA WebCentral Platform

35

PRIMAVERA WebCentral SDK Manual

'here in the code behind file, using the exact variable name as stated in the ascx

Protected WithEvents messageBox As Primavera.Platform.WebUI.Controls.WebGridMessage

Protected WithEvents articleAdminMasterGrid As

Primavera.Platform.WebUI.Controls.WebGridTableFilter

>

Now let’s implement the property, which persists the user’s control current visualization
mode. As a user control by itself is stateless, we’ll store the current mode into the session
object. We will show/ hide the grid/ detail panel whenever the user control’s visualization
mode is changed:

'<summary>

v

This UserControl must handle various modes, as it joins the master and

v

detail form. The following property will persist the current state, using the

v

Session object. The initial state is consultation, which means, the master

' grid view is displayed. Whenever the user edits or inserts a new record, the

v

master grid needs to be hidden and the details pane needs to be shown.
'</summary>
Private Property Mode () As VisualizationMode
Get
If Session("ArticleAdminMode") Is Nothing Then
Return VisualizationMode.Consultation
Else
Return CType (Session("ArticleAdminMode"), VisualizationMode)
End If
End Get
Set (ByVal Value As VisualizationMode)
Select Case Value
Case VisualizationMode.Consultation
panelArticleMaster.Visible = True
panelArticleDetails.Visible = False
Case VisualizationMode.Insertion
panelArticleMaster.Visible = False
panelArticleDetails.Visible = True
articleAdminEntityDetails.Mode = VisualizationMode.Insertion
Case VisualizationMode.Edition
panelArticleMaster.Visible = False
panelArticleDetails.Visible = True
articleAdminEntityDetails.Mode = VisualizationMode.Edition
End Select
Session ("ArticleAdminMode") = Value
End Set
End Property 'Mode

The following method is a helper method which will allow us to easily show a message box
style information to the user. We will reuse the WebGridMessage user control, which is
available through the PRIMAVERA WebCentral Platform.

'<summary>

v

The following method is used to show a message (or an error) to the user;

v

it will show the platform's message box user control and initialize the

' icon/text to be shown.

'</summary>

36

PRIMAVERA WebCentral SDK Manual

Private Sub ShowMessage (ByVal Type As Platform.WebUI.Controls.WebGridMessageType,

ByVal Title As String, ByVal Message As String)

messageBox.Visible = True
messageBox.MessageType = Type
messageBox.MessageTitle = Title
messageBox.MessageText = Message

messageBox.Refresh ()

End Sub 'ShowMessage

» The Page_Load event handler method will be called whenever the client requests a web
page that contains the administration user control - so that’s a good place to do some
initialization. For example, the WebGridTableFilter user control needs to know which table
filter it should use to display its data. The article detail user control needs to know contextual
information for being able to load the business entity detail data from the database. While
implementing this method, pay special attention to the TableFilterID property - this
property needs to be initialized to unique identifier as declared before in the TableFiltersIds
class.

'<summary>

' The following method will be called when the page loads; it should be used
' to initialize the page's controls.

'</summary>

Protected Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

'initialize the table filter grid; we'll need to initialize this control with
module name

'as well as table filter object (defined in the solutions Modules project),
which will be

'used to query the information from the database.

articleAdminMasterGrid.ModuleName = "Primavera.KnowledgeBase"

articleAdminMasterGrid.TableFilterID = New Guid("{25662350-E994-45dd-9C75-
340AA517357D}")

'initialize the details user control's web context property

articleAdminEntityDetails.WebContext = Me.WebContext

'if not postback: initialize the forms mode to its default (consultation)
If Not Me.IsPostBack Then
Mode = VisualizationMode.Consultation
articleAdminMasterGrid.RefreshDataSource ()
End If
End Sub 'Page Load

> The WebGridTableFilter user control, by default, presents a toolbar which allows the user
to easily insert, edit, remove and clone records. We now need to implement the code for
these event handlers. Let’s start with the event handler which will be called whenever the
user decided to create a new record:

'<summary>

37

PRIMAVERA WebCentral SDK Manual

' The following method will be called whenever the user clicked on the "New"

button
' of the table filter grid. The method will simply change the mode to insertion,
which
' will cause the table filter grid to be hidden and the details view to be shown.
'</summary>

Private Sub articleAdminMasterGrid CreateRecord (ByVal Sender As Object)

Handles articleAdminMasterGrid.CreateRecord

Me.Mode = VisualizationMode.Insertion

End Sub 'articleAdminMasterGrid CreateRecord

» Yes, that's all. We just set the current mode to Insertion. The property implementation will
hide the administration grid and initialize the articles’ details user control to insert a new
record. The event handler, which is called to edit an existing record, is slightly more
complex. It needs to initialize the article details ArticleId property, so it knows which article
should be edited.

'<summary>

' The following method will be called whenever the user clicked on the "Edit"

button
' of the table filter grid. The method will initialize the details view unique id
' property and set the edition mode, which will cause the table filter to be
hidden
' and the details view to be shown.
'</summary>

Private Sub articleAdminMasterGrid EditRecord(ByVal Sender As Object,
ByVal selectedRowIdentifier As WebGridTableFilter.TableFilterKeyValueCollection,

ByRef cancel As Boolean) Handles articleAdminMasterGrid.EditRecord

Try
articleAdminEntityDetails.ArticlelId = selectedRowIdentifier ("ID")
Mode = VisualizationMode.Edition
Catch ex As System.Security.SecurityException
Mode = VisualizationMode.Consultation
ShowMessage (WebGridMessageType.Warning, String.Empty, ex.Message)
Catch ex As Exception
Mode = VisualizationMode.Consultation
ShowMessage (WebGridMessageType.Error, String.Empty, ex.Message)
End Try
End Sub 'articleAdminMasterGrid EditRecord

> The event handler for the clone operation won't need to change the visualization mode. It
simply clones the currently selected record by using the module’s business service layer,
before it rebinds the grid with the data source.

'<summary>
' The following method will be called whenever the user clicked on the "Clone"

button

38

PRIMAVERA WebCentral SDK Manual

' of the table filter grid. The code here demonstrates how to clone a existing
record.

'</summary>

Private Sub articleAdminMasterGrid CloneRecord(ByVal Sender As Object,
ByVal selectedRowIdentifier As WebGridTableFilter.TableFilterKeyValueCollection,

ByRef cancel As Boolean) Handles articleAdminMasterGrid.CloneRecord

Try
Dim articleId As System.Guid = CType (selectedRowIdentifier ("ID"),
System.Guid)
Dim businessLayer As New Business.Articles
businessLayer.Clone (WebContext.User.EngineContext, articleld)

articleAdminMasterGrid.RefreshDataSource ()

Catch ex As System.Security.SecurityException

ShowMessage (WebGridMessageType.Warning, String.Empty, ex.Message)

Catch ex As Exception

ShowMessage (WebGridMessageType.Error, String.Empty, ex.Message)
End Try

End Sub 'articleAdminMasterGrid CloneRecord

» The WebGridTableFilter user control also exposes a toolbar button which should refresh
the data shown in the grid - the event handler’'s implementation simply rebinds the grid to
the data source:

'<summary>

' The following method will be called whenever the user clicked on the "Refresh"
button.

' It will simply refresh the master grid and bind it to the data source.

'</summary>

Private Sub articleAdminMasterGrid Refresh (ByRef Cancel As Boolean)

Handles articleAdminMasterGrid.Refresh
articleAdminMasterGrid.RefreshDataSource ()

End Sub 'articleAdminMasterGrid Refresh

> We also need to respond to events that are triggered by the article details user control. If the
user clicked on the Save or the Back button, the administration user control needs to
update the visualization mode and hide the article details control and update the records
shown in the WebGridTableFilter.

'<summary>
' The following method will be called whenever the user clicked on the "Confirm"
button

' in the details view. This method sets the mode to consultation, which will cause

the

39

PRIMAVERA WebCentral SDK Manua

' table filter grid to be shown and the details control to be hidden.
'</summary>
Private Sub articleAdminEntityDetails ArticleSaved()

Handles articleAdminEntityDetails.ArticleSaved

Mode = VisualizationMode.Consultation

articleAdminMasterGrid.RefreshDataSource ()
End Sub 'articleAdminEntityDetails ArticleSaved

'<summary>

' The following method will be called whenever the user clicked on the "Back"
button in

' the details view. This method simply sets the mode to consultation, which will
cause the

' table filter grid to be shown and the details control to be hidden.

'</summary>

Private Sub articleAdminEntityDetails BackButtonClicked ()

Handles articleAdminEntityDetails.BackButtonClicked
Mode = VisualizationMode.Consultation

End Sub 'articleAdminEntityDetails BackButtonClicked

At this point, we should have done all modifications to support the administration of
KnowledgeBase articles. We've got the grid, which will show us all existing articles and provides
us with shortcuts to insert, edit, delete and clone KnowledgeBase articles. We implemented the
article details view, which allows us to insert new —and edit existing KnowledgeBase articles. The
solution should now be ready to compile without any errors. If you encounter an error during the
compile process, please refer to the code implementation in the appendixes 8 to 11.

Step 3.5 - Testing the Article Administration Component
» Use the Visual Studio 2008 IDE to compile the solution in DEBUG mode.

» Close the Visual Studio 2008 IDE and run the eModuleDeploy utility, which you will find in
the Tools folder of the PRIMAVERA WebCentral SDK.

» Indicate the complete filename of our module’s solution and start the deployment process.

» After the deployment process has completed, launch the Site Administrator Application and
navigate to the Portal Designer. Double-click on the Intranet portal. Create a new page
Article Administration in the already existing folder KnowledgeBase.

» Right-click the page content panel and choose to place a new component on the page. In the
component selection dialog, change the component type to Administration and select the
KnowledgeBase module in the left panel.

40

PRIMAVERA WebCentral SDK Manual

#2 Hovo Com ponente

Meve Compenentes | Importagdo de Componentes |

Tipos de Companentes : | ydministracio

) @rmrﬂslra@'g_:)
Mddulos Publicacae

= @] Médulos Dispaniveis
i@ eAdministradoer
[eProdutividade
KnowledgeBase
PRIMAVERA ERP
PRIMAVERA ERP
PRIMAVERA ERP
PRIMAVERA ERP
SiteBuilder

Componentes do Médulo

- Contas Correntes
- Recursos Humanos
- Stocks

- Vendas

Nome:

Confirmar] [Cancelar][

Ajuda]

components. Select this component and click on Confirm.
Check in the new page and publish the new portal revision.

Open a new instance of your browser and navigate to the recently a

The Article Administration component should now appear in the list of available

dded page. You should

see the new article administration component in action. The KnowledgeBase Article Grid

should appear like in the image below.

@T\._; v | ttp:fustmschueta/Intranet7/PortaiRender aspx P agelD= (25244 100- 15e4-423d -aada 7S5450FF7a 1) Tl [| |28
— E B »
W [glnnnet—PuweredvaRIMAVERAEnterurise Partals I I @ - fmh ~ |55} Page + G Tools ~
e NiE. T 1
- 9\‘. =
i A i .) < o] L4
: Home Dessnvolvimento Comercial Marketing Administrativo Recursos Humanos Organizacio Portais Knowledge Base 22 Fevereiro 2007
Home \ Knowledge Base \ Article Administration
Article Administration
Home
Desenvalvimento S
Comercial [mo | %% Now [¥ Edtar fif Gonar [3} Remover | T} Actuakear
Title Author Date
Marketing
SR - =) PRIMAVERA ESS Langa Vers3o 7 Meik Schuetz 08-02-2007 0:00:00
tve =) Intsgracio Laurs Jones 06-02-2007 17:45:39
Recursos Humanos (7] Desenvolvends um Msdule Jim Button 06-02-2007 17:45:38
Organizacio
Portais
Knowledge Base
Knowledge Base
Article Administration
‘[Powersd By |
{ Copyright @ PRIMAVERA Business Softwara Solutions, 5.8, Tedos os direitos raservados. =
Done &3 Local intranet w 100% -

KnowledgeBase Article Detail component should be shown:

Try creating a new KnowledgeBase article and check editing the newly created article. The

41

PRIMAVERA WebCentral SDK Manual

@T\:} v | [ttp:fustmschusta/Intranet7/PortaiRender.aspx P agelh=25a44 100- 15e4-223d 2ada 785450 7a 1 el (42l] | |28
— B - IS
W [?mnnet—?uwered by PRIMAVERA Enterprise Porials I I @ - fmh ~ |55} Page + G Tools ~
PORGAL 1O CoLABARADOR 3 Y Logoff &
= -~
i A i .) N - o] W [N
: Home Desenvolvimento Comercial Marketing Administrativo Recursos Humanos Organizagdo Portais Knowledge Base 22 Fevereiro 2007

i Home \ Knowledge Base \ Article Administration

Article Administration

Home
Desenvelvimento Date | 08-02-2007 v
Comercial Author |Meik Schustz

Image | <img src="UserFiles/Images/6_pbss jpg’ 2lign=lsft v [...

Marketing
= e Title | PRIMAVERA BSS Langa Vers3o 7

Administrativo

Texto ~vBrul=== = <
Recursos Humanos A PRIMAVERA BSS anuncia o langamento da versdo 7 do seu ERP,
a solucdo de gestdo de negdcios desenvolvida para responder
necessidades das empresas nacionais bem como dos
rcados internacionais onde actua

Organizacio
Portais
F—— Aricle
Knowledge Base

Article Administration

| (Powered By |
’ ke iy p——t e —
POREAL DO COLABORADOR) F’ “ M A— ’ -

{ Copyright @ PRIMAVERA Business Softwara Solutions, 5.8, Tedos os direitos raservados. =

&3 Local intranet w 100% -

Done

Step 4 - Component Customization

Imagine, whenever the user places the KnowledgeBase article list component on a page, you'd
like to give the possibility to choose if the image should be shown in this list, or not - if the name
of the author should appear, or not. Currently there’s no way to configure the visualization
attributes for any component that we implemented until now. This chapter will explain how to
provide configuration properties to a component. In this chapter we'll implement a windows
forms based configuration dialog, which will allow us to customize the article list component
appearance.

Step 4.1 - Creating an entity to persist the configuration

First of all, we'll need a place to store the configuration information. The PRIMAVERA WebCentral
Platform provides a concept named Property Bags, which allows us to store this kind of
information as serialized object using XML. There’s no need to create another SQL Server Table,
as these Property Bags are stored in a common table in the WebCentral Database. We will need
an entity which allows us to access this information, however.

> Open the Primavera.KnowledgeBase.Entities project and create a new folder named
PropertyBags. With this folder selected, create a new class named ArticleList.

> Implement this class as shown in appendix 12 [page 138].

As you can see, there’s nothing special about this classes implementation - just an entity class
having private attributes and public properties to access them. The only thing to remember is to
inherit from the base class PropertyBagBase and to give it a unique GUID value in the
SerializationEntity attribute:

42

PRIMAVERA WebCentral SDK Manua

<Serializable (), SerializationEntity("{A461C193-98FB-4a52-94AF-7EB6574B470E}",
"1.0")>
Public Class Articlelist
Inherits PropertyBagBase

Step 4.2 - Configuration support in the business service layer

In this step we'll do the necessary alterations in the business service layer to permit the article
list properties to be serialized to database.

» Open the Primavera.KnowledgeBas.Business project and create a new folder named
PropertyBags. With this folder selected, create a new class named ArticleList.

» This new class is responsible for reading and updating the article list components properties.
Implement the class like shown below.

Imports Primavera.KnowledgeBase.Entities
Imports Primavera.Platform.Engine.Entities

Imports Primavera.Platform.Engine.Business
Namespace PropertyBags

<SerializationService (GetType (Entities.PropertyBags.ArticlelList))>
Public Class Articlelist

Inherits PropertyBagServiceBase

Public Function Edit (ByVal Context As EngineContext, ByVal ID As
System.Guid)
As Entities.PropertyBags.ArticlelList
Return BaseEdit (Context, ID)

End Function

Public Sub Update (ByVal Context As EngineContext, ByVal PropertyBag As
Entities.PropertyBags.ArticlelList)
BaseUpdate (Context, PropertyBag)
End Sub
End Class

End Namespace

» Having the folder PropertyBags selected, create a new class named Proxy. This class will
provide us with a central location to access property bags through its static properties.

Namespace PropertyBags
Public Class Proxy
Public Shared ReadOnly Property ArticlelList () As Articlelist
Get
Return New Articlelist
End Get
End Property
End Class

43

PRIMAVERA WebCentral SDK Manua

End Namespace

Step 4.3 - Define the Interfaces for Remoting

The remoting layer - implemented through the assemblies IRemoting and Remoting - is
necessary for the WinUI being able to access the business service layer. The remoting layer will
marshal calls from the windows forms based client UI, which runs hosted by the Site
Administration utility or your browser, to the business service layer which executes on the web
server. Each call made from the client UI results in @ HTTP request on the web server, which
dispatches the request to the business service layer — so you should be very careful when it
comes to remote calls as it greatly can influence your applications performance.

» Open the project Primavera.KnowledgeBase.IRemoting and create a new folder named
PropertyBags. Having this folder selected, create a new class interface named IArticles.

» This interface will be used to marshal calls to access the article list components properties
and only contains the signatures of the procedures, which are later implemented in the
remoting project. Implement this interface class like shown below:

Imports Primavera.Platform.Engine.IRemoting

Namespace PropertyBags
Public Interface IArticlelist

Function Edit (ByVal RemoteContext As RemoteEngineContext,
ByVal ID As System.Guid) As Entities.PropertyBags.Articlelist

Sub Update (ByVal RemoteContext As RemoteEngineContext,
ByVal PropertyBag As Entities.PropertyBags.ArticlelList)

Function Exists (ByVal RemoteContext As RemoteEngineContext,
ByVal ID As System.Guid) As System.Boolean

Sub Remove (ByVal RemoteContext As RemoteEngineContext, ByVal ID As
System.Guid)

Function Clone (ByVal RemoteContext As RemoteEngineContext,
ByVal ID As System.Guid) As System.Guid
End Interface

End Namespace

» In the PropertyBag folder, create a new class named IProxy, which will define the
interface for the property bags proxy class. Like already implemented in the business service
layer, the proxy class will provide a simple way to access all property bags a module
exposes.

Namespace PropertyBags
Public Interface IProxy
ReadOnly Property ArticlelList () As IArticlelist
End Interface

End Namespace

» In the project’s root folder, create a new class named IProxy, which will define the interface
for all remoting interfaces that the module supports. Currently we only use remoting for
property bags, but we also could implement other windows based user interfaces. This proxy

44

PRIMAVERA WebCentral SDK Manua

class defines the global interface for all remoting classes implemented by the module.
Implement this class like shown below.

Public Interface IProxy
ReadOnly Property PropertyBags () As PropertyBags.IProxy

End Interface

Step 4.4 - Mapping the Remoting to the Business Layer

As already referred previously, the remoting layer channels calls from the client to the web
server using NET remoting. To avoid coding the same functionality twice, the remoting layer
simply maps calls to the Business Service Layer.

» Open the project Primavera.KnowledgeBase.Remoting and create a new folder named
PropertyBags. Insert a new class ArticleList to that new folder.

» Implement the new class like shown in appendix 13 [page 140]

If you take a quick look at the code you’'ll see that the class ArticleList does inherit from the
base class RemoteServiceBase, which is provided by the PRIMAVERA WebCentral Platform, and
implements the interface contract IArticleList, which we previously defined. You also can see
how each method of this class instantiates an object of the business layer and calls the
appropriate method.

To easen up calls to the remoting layer, we also implement a proxy class, which will provide us
an easy way to access the property bag from the windows form.

» Create a new class named Proxy in the PropertyBag folder of the project
Primavera.KnowledgeBase.Remoting.

» Implement the new proxy class like shown below.
Namespace PropertyBags
Public Class Proxy
Inherits MarshalByRefObject

Implements IRemoting.PropertyBags.IProxy

Public ReadOnly Property ArticleList() As
IRemoting.PropertyBags.IArticleList
Implements IRemoting.PropertyBags.IProxy.ArticlelList
Get
Return New Articlelist

End Get

End Property

End Class

End Namespace

» Now we still need to implement the Proxy interface at module level. In the project’s root
folder, create a new class named Proxy and implement it like shown below.

Public Class Proxy

Inherits Primavera.Platform.Engine.Remoting.RemoteProxyBase

45

PRIMAVERA WebCentral SDK Manua

Implements Primavera.KnowledgeBase.IRemoting.IProxy

Public ReadOnly Property PropertyBags () As IRemoting.PropertyBags.IProxy

Implements IRemoting.IProxy.PropertyBags

Get

Return New Remoting.PropertyBags.Proxy

End Get
End Property
End Class

Step 4.5 - Creating the Configuration Dialog

Now that we have implemented all necessary code for persisting the article list’s configuration
entity, we can start creating the configuration dialog in the WinUI project.

» Open the project Primavera.KnowledgeBase.WinUI and add a new reference to the
assembly Primavera.Platform.WinUI.dll, which is located in the installation directory of

the PRIMAVERA WebCentral SDK.

» In the WinUI project, create a new folder PropertyBags and insert a new Windows Form

named ArticleList.

Now we should have an empty windows forms dialog where we will need to add some controls to
the dialog, so that it looks more or less like the following screenshot:

[Article List Properties

Parameters

Mumber of Artides to show:

[show Images in the Article List
[show Summary in the Artide List
[show Author in the Artdle List

Hyperlink to Article Detail: |

[Confirm][Cancel]

The following table shows all controls that you should place from the Visual Studio IDE toolbox to

the windows forms dialog:

Control
Button
Button
TabControl
GroupBox
GroupBox

GroupBox

Name
cmdConfirm
cmdCancel
tabParameters
GroupBox1
GroupBox2
GroupBox3

Caption
Confirm
Cancel

Parameters

46

PRIMAVERA WebCentral SDK Manua

Label IblArticleCount Number of Articles to show:
NumericUpDown txtArticleCount

Label IblArticleSort Sort Article List by:

ComboBox cmbArticleSort

CheckBox chkShowImage Show Images in the Article List
CheckBox chkShowSummary Show Summary in the Article List
CheckBox chkShowAuthor Show Author in the Artcle List
Label IblArticleDetailLink Hyperlink to Article Detail:
TextBox txtArticleDetailLink

Button cmdBrowseHyperLink

Place all these controls on the ArticleList Windows Forms dialog and format them, so that the
dialog looks more or less like in the above screenshot.

» After all controls have been placed on the dialog, it is time to take a look at the code. The
first thing to do is to import the necessary namespaces as well as to change the base class.
Open the code behind file and declare the following nhamespaces at the beginning of the file.

Imports Primavera.Platform.Engine.IRemoting
Imports Primavera.KnowledgeBase.Entities

Imports Primavera.KnowledgeBase.IRemoting

» Next we will need to change the dialogs base class. This Solutan Explorer - Solation Primavera knonledgeBs...
is done in file named ArticleList.Designer.vb which is

; Salution ‘Primavera.KnowledgeBase' (8 projects)

normally hidden. You will need to click on the Show All (5l rimavera.knoniedgetase Business

|2l Primavers knowledoeBase. Data
Primavera.KnowledgeBase.Entities
Primavera KnowledgeSase. [Remoting

toolbar button in the Solution Explorer to make it visible.

The ArticleList.Designer.vb file is displayed as child of e oo e
the ArticleList.vb file and contains all designer relevant %E:::::::EZ;:::S;::::::::;buull
code. Please change the class declarations base class so 5l My Project

it matches the following code segment:

(i3] References
ibin

} o
ropertyBags
rticleL

& ArticleList.Designer.vh

- %] Artcelstresx
~ 8] Assemblylnfo.vb

<Global.Microsoft.VisualBasic.CompilerServices.Designer
Generated()>
Partial Class Articlelist

Inherits Primavera.Platform.WinUI.FormBase

» After changing the dialogs base class to Primavera.Platform.WinUI.FormBase, save and

close the ArticleList.Designer.vb file as we won't need it anymore. In the ArticleList.vb
file, add the following private attribute declaration into the ArticleList class.

'<summary>

' The following private attribute will store the article lists current
' configuration settings.

'</summary>

Private articlelListPropertyBag As Entities.PropertyBags.ArticlelList

Private componentLink As Platform.WinUI.ComponentLinkDialogOutput

47

PRIMAVERA WebCentral SDK Manual

> We also need a custom constructor method, which will receive a context for object
initialization. This context variable, among other, contains information about the current user
and the current portal. Implement the new constructor like this:

'<summary>

' custom c'tor

'</summary>

Public Sub New (ByVal WinContext As WinContext)
MyBase.New (WinContext)
InitializeComponent ()

End Sub 'New

» The dialog will be invoked whenever the user places a new ArticleList component on a page,
or when the user wants to change the existing components properties. We need to provide
two methods that will be called whenever the components properties need to be shown.

'<summary>
' Call the following method to configure the properties for a new
' component.
'</summary>
Public Function INew () As Guid
InitializeForm/()
NewPropertyBag ()
ShowPropertyBag ()
If Me.ShowDialog() = DialogResult.OK Then
Return articlelListPropertyBag.ID
Else
Return Nothing
End If

End Function 'INew

'<summary>
' Call the following method to configure the properties for an already
' existing component.
'</summary>
Public Sub IEdit (ByVal PropertyBagID As Guid)
InitializeForm/()
EditPropertyBag (PropertyBagID)
ShowPropertyBag ()
Me.ShowDialog ()
End Sub 'IEdit

» The following method will initialize a new property bag instance for the ArticleList component
with default values. It will be called whenever the user places a new ArticleList component on

a page.

'<summary>

' The following method is called to initialize a new property bag
' entity, and is called whenever the user places a new component
' on a page.

'</summary>

48

PRIMAVERA WebCentral SDK Manual

Private Sub NewPropertyBag ()
articlelListPropertyBag = New Entities.PropertyBags.ArticlelList
With articlelListPropertyBag
.ID = Guid.NewGuid
.IncludeAuthor = True
.IncludeImage = True
.IncludeSummary = True

.NumArticles = 5

.Order = Entities.PropertyBags.ArticlelListOrder.OrderByDate
.DetailPageID = Guid.Empty
End With
End Sub

» The next two methods simply push data from the property bag object to the dialog’s user
interface and vice versa. These are two standard methods to synchronize the user interface
and the proper bags object — nothing special about it. The only eye catcher here is the
ComponentLinkEdit object. This is a dialog provided by the PRIMAVERA WebCentral
Platform, which allows the user to easily select an existing page from any portal, and returns

its full URL and unique page identifier. You can reuse this dialog wherever you think it’s
necessary.

'<summary>

v

The following method will be called to initialize the dialog's
' user interface controls with the property bag's values.
'</summary>

Private Sub ShowPropertyBag()

With articlelListPropertyBag

txtArticleCount.Value = .NumArticles
cmbArticleSort.SelectedIndex = .Order
chkShowAuthor.Checked = .IncludeAuthor
chkShowImage.Checked = .IncludeImage
chkShowSummary.Checked = .IncludeSummary

componentLink = Platform.WinUI.Dialogs.ComponentLinkEdit (WinContext,
.DetailPageID)
If Not componentLink Is Nothing Then
txtArticleDetaillink.Text = componentLink.PageName
Else
txtArticleDetaillink.Text = "<Default>"
End If
End With
End Sub

'<summary>

The following method will be called to read the values in the

' dialog's user interface to to property bag object.

'</summary>
Private Sub ReadPropertyBag()
With articlelistPropertyBag
.NumArticles = txtArticleCount.Value

.Order = cmbArticleSort.SelectedIndex

49

PRIMAVERA WebCentral SDK Manual

.IncludeAuthor = chkShowAuthor.Checked
.IncludeImage = chkShowImage.Checked
.IncludeSummary = chkShowSummary.Checked
.DetailPageID = componentLink.PageID
End With
End Sub

> Of cause we need to synchronize the property bag object attributes with the WebCentral
Database. The following methods will take care of reading and writing the property bags

configuration from/to the WebCentral Database, using the remoting layer, which we
implemented before.

'<summary>
' The following method will be called to read an existing property
' Dbag from the WebCentral database.
'</summary>
Private Sub EditPropertyBag (ByVal PropertyBagID As Guid)
Dim Context As Platform.Engine.IRemoting.RemoteEngineContext =

MyBase.CreateRemoteEngineContext ()

Dim Proxy As IRemoting.IProxy = Me.CreateRemoteProxy (GetType (IRemoting.IProxy))

articlelistPropertyBag = Proxy.PropertyBags.ArticlelList.Edit (Context,
PropertyBaglD)
End Sub

'<summary>
' The following method will be called to store the property bags
' attributes to the WebCentral database.
'</summary>
Private Sub UpdatePropertyBag ()
Dim Context As Platform.Engine.IRemoting.RemoteEngineContext =

MyBase.CreateRemoteEngineContext ()

Dim Proxy As IRemoting.IProxy = Me.CreateRemoteProxy (GetType (IRemoting.IProxy))

Proxy.PropertyBags.ArticleList.Update (Context, articleListPropertyBag)
End Sub

» We still did not implement the dialog control’s initialization yet. The initialization method
simply initializes the sorting order combo box items and sets the minimum and maximum

number of records to show in the article list.

'<summary>

' The following method initializes the dialogs controls

'</summary>

Private Sub InitializeForm()
cmbArticleSort.Items.Clear ()
cmbArticleSort.Items.Add ("Article Date")
cmbArticleSort.Items.Add ("Article Author")
cmbArticleSort.Items.Add ("Article Title")

cmbArticleSort.SelectedIndex = 0

txtArticleCount.Maximum = 15

txtArticleCount.Minimum = 1

50

PRIMAVERA WebCentral SDK Manual

End Sub

» But what should happen when the user clicks on the browse button to select a page for the
article details? By default, WebCentral will use an empty page and automatically places there
the article detail component in it, which shows the selected article details. Now, it is possible
to create a custom page, just like any other page with other components, which will be
called whenever the user clicks on an article in the list. The only requisite is that the page
contains - among the other components - the ArticleDetail component. The following code
will implement the page selection for the article detail page. Please make sure that the
ComponentID property is equal to the component id for the ArticleDetail component, as
specified in the file Componentslds in the Primavera.KnowledgeBase.Modules project.

'<summary>
' The following method is called whenever the user clicked the Browse
' button, to select a page that contains the ArticleDetail component.
'</summary>
Private Sub btnLinkDetalhe Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
Handles cmdBrowseHyperlink.Click
Dim dlgInput As New Platform.WinUI.ComponentLinkDialogInput ()
dlgInput.ComponentID = New Guid (" {B6B669F2-35B2-43al-A03D-7325EEB2B082}")
dlgInput.PortalID = WinContext.Portal.PortalID
dlgInput.PageID = articlelistPropertyBag.DetailPagelD
Dim dlgOutput As Platform.WinUI.ComponentLinkDialogOutput = _
Primavera.Platform.WinUI.Dialogs.ComponentLinkSelect (WinContext, dlgInput)
If Not dlgOutput Is Nothing Then
articlelistPropertyBag.DetailPageID = dlgOutput.PagelD
ShowPropertyBag ()
End If
End Sub

» The only thing that’s missing now, are the event handler methods for the Confirm -and
Cancel buttons.

'<summary>
' The following method is called whenever the user clicked the Confirm
' button. It will shift the configuration data from the user interface
' to the property bag object and store the changes in the Enterprise
' Portals database.
'</summary>
Private Sub btnConfirm Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
Handles cmdConfirm.Click
ReadPropertyBag ()
UpdatePropertyBag ()
Me.DialogResult = DialogResult.OK
End Sub

'<summary>

' The following method is called whenever the user clicked the Cancel

51

PRIMAVERA WebCentral SDK Manua

' button. The user interface closes and no changes are done.
'</summary>
Private Sub btnCancel Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
Handles cmdCancel.Click
Me.DialogResult = DialogResult.Cancel
End Sub

After all these steps, the ArticleList dialog code behind file should somewhat look like stated in
Appendix 14 [Page 142]. At this stage you can compile your project and see if there are any
warnings or errors. If so, please verify the erroneous piece of code and compare it with the
listing in Appendix 14.

Step 4.6 - Invoking the Configuration Dialog

All that is missing now is invoking the configuration dialog at the time the user places a new
ArticleList component to a page, or whenever the user wishes to edit an existing components
configuration. If you remember, the Components class in the project Modules provides two
methods NewPropertyPage and EditPropertyPage. These two methods are called whenever
it’s necessary to show the configuration dialog. Change these two methods like shown below.

Public Function NewPropertyPage (ByVal WinComponentContext As WinComponentContext)
As System.Guid _
Implements IComponents.NewPropertyPage
If
WinComponentContext.ComponentID.Equals (ComponentsIDs.KnowledgeBaseArticleList) Then
Dim dialog As New KnowledgeBase.WinUI.ArticleList (WinComponentContext)
Return dialog.INew ()
Else
Return Guid.NewGuid
End If

End Function

Public Sub EditPropertyPage (ByVal WinComponentContext As WinComponentContext)
Implements IComponents.EditPropertyPage
If
WinComponentContext.ComponentID.Equals (ComponentsIDs.KnowledgeBaseArticleList) Then
Dim dialog As New KnowledgeBase.WinUI.ArticleList (WinComponentContext)
dialog.IEdit (WinComponentContext.PropertyBaglD)
End If
End Sub

Step 4.7 - Applying the Configuration Settings

Once we implemented the possibility to define the configuration settings for the article list
component, we'll also have to apply these configuration settings. Naturally this is done in the
WebUI project, in the article list web user control.

> Open the project Primavera.KnowledgeBase.WebUI and open the code-behind file
ArticleList.ascx.vb

52

PRIMAVERA WebCentral SDK Manua

» Add a new private member variable propertyBag to the class, which will store the
configuration settings for the component.

Private propertyBag As Entities.PropertyBags.Articlelist

> In the event handler Page_Load, insert a single line to load the configuration settings for
the component.

Private Sub Page Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
propertyBag =
ComponentContext.PropertyBag (GetType (Entities.PropertyBags.ArticleList))
LoadArticles ()
End Sub

» Add a new function named GetOrderByField, which will return the name of the field, which
should be used for sorting the grid’s records.

Private Function GetOrderByField() As String
Select Case PropertyBag.Order
Case Entities.PropertyBags.ArticlelListOrder.OrderByAuthor

Return " [author]"

Case Entities.PropertyBags.ArticlelListOrder.OrderByDate

Return " [date]"

Case Entities.PropertyBags.ArticlelListOrder.OrderByTitle

Return "[title]"

Case Else

Return " [date]"

End Select

End Function

» Add a new function named BuildQuery, which will return a SQL query based on the current
component configuration.

Private Function BuildQuery() As String
Dim strSgl As String = "SELECT TOP $1 * FROM KNB Articles ORDER BY $2"
Return Primavera.Platform.Engine.Business.SqlUtils.FormatSql (strSql,
propertyBag.NumArticles, GetOrderByField())

End Function

» In the already existing method LoadArticles, replace the static SQL query with a call to the
BuildQuery method.

Private Sub LoadArticles ()
Dim strSql As String = BuildQuery ()
Dim tblArtigos As DataTable = Primavera.Platform.Engine.Business.List.List(_
WebContext.User.EngineContext, strSql)
lstArtigos.DataSource = tblArtigos

53

PRIMAVERA WebCentral SDK Manua

lstArtigos.DataBind ()
End Sub

» We'll need to build a correct URL whenever the user specified a specific page to access the
articles details. Modify the method GetDetailPageUrl so it matches following code (but
make sure that the article detail guid matches the one you specified in the
ComponentslIds.vb file).

Public Function GetDetailPageUrl (ByVal articlelId As Guid) As String
Dim guidCompArticleDetail As Guid = New Guid ("B6B669F2-35B2-43al-A03D-
7325EEB2B082")
If PropertyBag.DetailPageld.Equals (Guid.Empty) Then

Return String.Format ("ComponentRender.aspx?ComponentID={0}&ArticleID={1}",

guidCompArticleDetail, articleId)
Else
Return String.Format ("PortalRender.aspx?PageID={0}&ArticleID={1}",
PropertyBag.DetailPageId.ToString (), articleld)
End If

End Function

Step 4.8 — Testing the Configuration Dialog
» Use the Visual Studio 2008 IDE to compile the solution in DEBUG mode.

» Close the Visual Studio 2008 IDE and run the eModuleDeploy utility, which you will find in
the Tools folder of the PRIMAVERA WebCentral SDK.

Y

Indicate the complete filename of our module’s solution and start the deployment process.

Y

After the deployment process has completed, launch the Site Administrator Application and
navigate to the Portal Designer. Double-click on the Intranet portal.

» The portal should already have a folder Knowledge Base. Place a new page inside that
folder and name it Article Detail. Place an article detail component on this page. This page
will be our customized article detail page.

Ficheiro Portal
BofFx bR PE ODE

= &) Intranet = - -]
) Home Article Details |

{2 Desenvalvimento
5 Camercial
{0 Marketing
B Administrativo
-2 Recursos Humanos
B+ Crganizacio
{3 Portais
=} @3 vledge Base
8] Knowledge Base
3 Knowledge Base Detail
L[3 Artce Administration

) Propriedades do Portal

utilizadorzadmin Portal:Intranet Knowdedge Base Detail

54

PRIMAVERA WebCentral SDK Manual

> Select the page Knowledge Base for editing. This page already should have an Article List
component. We will need to remove this component from the page, as it does not have a
configuration associated yet. Right-click the component and choose to remove the
component.

> Place a new Article List component on the page. After confirming, it now should now open
the configuration dialog for the component. Try changing the maximum number of articles to
show in the list and/or changing the sort order. Try to specify the previously created page as
new article detail page.

Ficheiro Portal
Bofx Ba@iEd 0@

[l | Designer | Preview

B @ Intranet
&-{ Home
&-{E) Desenvolvimento
{2 Comercial
E-{ Marketing Parameters
B Administrative
B Recursos Humanos

@ Organizacio Number of Articles to show:
D E_H
- Knowledge Base Sort Article List by: Article Author

i8] Knowledge Base
Artide Administration

@ Propriedades do Portal Show Images in the Artidle List
Show Summary in the Article List
Show Author inthe Artcle List

Article List7

Article List Properties

Hyperlink to Article Detail: <Default> E

Utilizador:admin Portal:Intranet Knowledge Base

» The preview window should immediately reflect the changes made to the components
configuration.

Step 5 - Component Security

One of the most important marks of PRIMAVERA WebCentral is its support for multi-level based
security - the possibility to define permissions for each component, on a community,
organization and user group level. In this chapter, we will explain how to integrate our
customized component with the WebCentral’s security system.

55

PRIMAVERA WebCentral SDK Manual

Eicheiro Portais Aprovacdes Seguranga Pardmetros Ajuda

@, Portais ~ [} Ajuda | @, Site PRIMAVERA _

[l Site Administrator
= Portais
Criacio de PONLIILERTS
Desenho de
= Aprovages
Regras de Ap|
= Seguranca
Comunidade
Organizagdes]
Grupos Inter
Utilizadores]|

Comunidades

Idenﬁﬁcagéo‘ Seguranca ‘Permiss&es COrganizagdes

Pégina 1de 1

Empresa
<ePrimavera>
<ePrimavera>
VID0GA
<EPrimavers >
Utilizadoresd | | v7ooga Tipo: | <ePrimaveras [w] Empresa: |
= Pardmetros VIOOQA -
Sistema VIOOQA Permissdes Funcionais | Permissées Dados

Comunidade Andnima

Madula: \Kno.;;\edgeaasa Minha Comunidade

Comunidade de Parceiros

| vtilizadores Bemos

Categorias
g ~[#]Knowledge Ease Artide Administraton

< Confirmar_| [_Cancelar | [__Aiuda [>

Pronto = rorkt? admin

Step 5.1 - Support for the Component Security

The security support can be activated/ deactivated for each component. This option can be
modified in the Components class in the project Primavera.KnowledgeBase.Modules.

»

To enable the security support for the Article Administration component, open up the module
Primavera.KnowledgeBase.Modules and edit the file Components.vb

Locate the method Edit and the line in which the property ComponentSecurity is set to
False for the Article Administration component. The fact that this property is set to False
means that the component is always shown to any user, without any security validation.

Change this value assignment so the property ComponentSecurity is set to True.

ElseIf ComponentID.Equals (ComponentsIDs.KnowledgeBaseArticleAdmin) Then
objComp.Name = "Article Administration"
objComp.Description = "Component for Article Administration"
objComp.ComponentClass = "ArticleAdmin"
objComp.RequiresEnterprise = False
objComp.IconIndex = 0
objComp.BackgroundOpaque = True
objComp.AllowsFrame = True

objComp.ComponentSecurity = True

End If

To enable security support for the KnowledgeBase module we will need to build the
permission tree. Still in the project Primavera.KnowledgeBase.Modules, open the class
Security and locate the method GetePrimaveraPermissionTree and implement it like
shown below.

Dim objPermTree As New SecurityPermissionTree
If PermissionTreeType = PermissionTreeType.Functional Then

objPermTree.Add ("ArticleAdmin", "Knowledge Base Article Administration",

56

PRIMAVERA WebCentral SDK Manua

ComponentsIDs.KnowledgeBaseArticleAdmin)

ElseIf PermissionTreeType = PermissionTreeType.Data Then

End If

Return objPermTree

Step 5.2 - Testing the Component Security

>
>

Use the Visual Studio 2008 IDE to compile the solution in DEBUG mode.

Close the Visual Studio 2008 IDE and run the eModuleDeploy utility, which you will find in
the SDK folder of the PRIMAVERA WebCentral.

Indicate the complete filename of our module’s solution and start the deployment process.

After the deployment process has completed, launch the Site Administrator Application and
navigate to the Portal Designer. Double-click on the Intranet portal.

In the Portal Designer, make sure that you check-in all pages that are listed in the
Knowledge Base folder. Publish the portal so that all modifications get online.

Close the Portal Designer and navigate Security | Communities, which allows you to define
the permissions for the community level. Double-click the community Minha Comunidade,
select the security tab and add permission to access the KnowledgeBase Module.

Confirm all changes and navigate to Security | Organizations, and add permissions to
access the KnowledgeBase Module for the organization Minha Organizagao.

Confirm all changes and navigate to Security | Grupos Internos and add permissions to
access the KnowledgeBase Module for the usergroup DID.

Try accessing the Article List Administration component using the portal Intranet and using
the user joao.fonseca, which is member of the DID user group. The user has full access to
the administration component.

Now logoff and login using the user ana.casaco. Navigate to the Article List Administration
component and you'll see that ana, which belongs to the group DRH, does not have sufficient
permissions to see this component.

57

PRIMAVERA WebCentral SDK Manua

G«?} - ‘g, hh]:u:f,fwsh‘ns(huehﬂntanel?'anrta\REndEr‘aspx?PagEID={253+‘HhD-15&4—123d-aada-?9548fﬂﬁ751}|l]|4"‘||x‘ ‘ ||P =
— : - = »
v dfr I@Inhanet—?cwered by PRIMAVERA Enterprise Portzls l } i @ s QEEDE » (G Tools =
e ——
POREAL DO COLABORADOR
s
Home Desenvolvimento Comercial Marketing Administrative Recursos Humanos Organizagso Portais Knowledge Base 27 Fevereiro 2007
Home \ Knowledge Base \ Article Administration

Article Administration

Home

COMPONENTE BLOQUEADO

Comercial

Markstin
¢ Mdo possui permissies para aceder a este
Componente =

Administrativo

Recursos Humanos

Organizacdo

Portai

Knowledge Base

&4 Local intranet # 100% -

Step 6 — Supporting Multiple Languages

This exercise will explain how to implement multi language support to your components. We are
going to prepare our KnowledgeBase project so it can accept and visualize the KnowledgeBase
articles in various languages.

Step 6.1 - Preparing the business entities for localization

Currently, our Article business entity encapsulates all necessary attributes for a KnowledgeBase
article in one single class. Supporting multiple languages means that we need to split these
attributes in language dependent and independent attributes. There will be a master/detail
relation, as there can be multiple language dependent records (details) for one single article
(master). We'll need to remove the language dependent attributes from the master class Article
and introduce a new (detail) class, named ArticleCulture, which holds the language dependent
attributes (Article Title, Summary and Body).

>

Create a new class named ArticleCulture - this class will hold all language dependent
information and a reference to the master article (properties Articleld, Cultureld, Title,
Summary and Body). See appendix 15 [page 146] for the complete code implementation.

Create a new collection class ArticleCultures - this class will hold all available translations
for a specific KnowledgeBase article. See appendix 16 [page 148] for the complete code
implementation.

In the project PrimaveraKnowledgeBase.Entities, open the class Article and remove the
properties Title, Summary and Body.

Still in the class Article, create a new private member attribute named m_articleCultures,
as well as its public property accessors, from type ArticleCultures. This variable will store
all article translations.

Private m_articleCultures As New ArticleCultures

<BusinessEntityDetailAttribute ()> _

58

PRIMAVERA WebCentral SDK Manua

Public Property ArticleCultures() As ArticleCultures
Get
Return m articleCultures
End Get
Set (ByVal Value As ArticleCultures)
m articleCultures = Value
End Set

End Property

Step 6.2 - Changes in the Administration Component

We'll need to support the creation of articles in various languages; therefore we’ll need to do
some minor modifications to our KnowledgeBase article administration component. We'll simply
provide the user a way to select a culture using an auto post back drop down list to the article
details. Each time the user selects a new culture, the language dependent controls are
respectively updated.

>

Open the project Primavera.KnowledgeBase.WebUI and open the ArticleAdminDetail.ascx
file for the article administration component.

At the start of the HTML table that is used for data input, insert a new row which contains a
label and a drop down, which will be filled with the available languages.

(omitted)
<table>
<tr>
<!-- Culture Selection Box -->
<td class="width s alignRight">Culture</td>
<td class="width 1">
<asp:DropDownList ID="cultureSelection"
runat="server" CssClass="data input width x1" AutoPostBack="True">
</asp:DropDownList></td>
</tr>
<tr>
<!-- Articles Publishing Date (Infragistics DateTime Picker) -->
<td class="width s alignRight">Date</td>
<td class="width s">
<WebC:webdatechooser id="txtDate" runat="server"></WebC:webdatechooser>
</td>
</tr>

(omitted)

Switch to the code behind file and declare a new private member variable, which will be used
to store the currently selected culture id.

'private attributes, which are initialized by the parent user control using the
'public properties this class exposes

Private _webContext As Primavera.Platform.WebUI.WebContext

Private visualizationMode As VisualizationMode

Private m activeCulture As Guid

59

PRIMAVERA WebCentral SDK Manual

> Insert a new private property, which will persist the language dependent data for the
currently selected culture id.

'<summary>
' The following property persists an language dependent business entity
' object of the record that is currently edited. This property is for
' internal use only.
'</summary>
Private Property BusinessEntityCulture() As Entities.ArticleCulture
Get
If Not Session("ArticleBEOCulture") Is Nothing Then
Return CType (Session("ArticleBEOCulture"), Entities.ArticleCulture)
End If
Return Nothing
End Get
Set (ByVal Value As Entities.ArticleCulture)
Session ("ArticleBEOCulture") = Value
End Set

End Property

» Locate the method ClearSessionObjects and make sure that the language dependent data
stored in the session cache is properly removed. Add the following line to its implementation.

'<summary>

' The following method will cleanup the session object which are used by this
' user control. You should call this method whenever the in the session state
' persisted objects are no longer necessary.

'</summary>

Private Sub ClearSessionObjects ()

Session.Remove ("ArticleId")
Session.Remove ("ArticleBEO")

Session.Remove ("ArticleBEOCulture")

End Sub 'ClearSessionObjects

> Locate the method ShowBusinessEntity. This method makes references to already not
existing properties of the entity object. We'll need to adapt the code so it shows the
language dependent data. Change the following two property assignments.

'<summary>

' The following method will be called whenever it is necessary to initialize

' the user control with values from the currently loaded business entity. This
' 1is basically everytime the case, when a user edits an existing record.
'</summary>

Private Sub ShowBusinessEntity ()

txtAutor.Text = Me.BusinessEntity.Author
txtArticle.Text = Me.BusinessEntityCulture.Body

60

PRIMAVERA WebCentral SDK Manual

txtDate.Value = Me.BusinessEntity.Date
txtTitle.Text = Me.BusinessEntityCulture.Title

txtImage.Text = Me.BusinessEntity.Image

'update image selection control
WebImageSelectionPopUpButtonl.ImageHtml = Me.BusinessEntity.Image

WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

End Sub 'ShowBusinessEntity

» Locate the method CreateBusinessEntity in which we’ll need to update the code, so that an
entity for the default culture is being correctly created and initialized.

'<summary>
' The following method will be called whenever the user wishes to create
' a new record. This method initializes a new business entity object.
'</summary>

Private Sub CreateBusinessEntity()

'initialize new business entity

Dim businessEntity As New Entities.Article
businessEntity.ID = Guid.NewGuid ()
businessEntity.Author = WebContext.User.UserName
businessEntity.Date = DateTime.Now

businessEntity.Image = String.Empty

Dim businessEntityCulture As New Entities.ArticleCulture
businessEntityCulture.ArticleID = businessEntity.ID
businessEntityCulture.CultureID = m_activeCulture

businessEntity.ArticleCultures.Add (businessEntityCulture)

'initialize image button
WebImageSelectionPopUpButtonl.ImageHtml = businessEntity.Image

WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

Me.BusinessEntity = businessEntity

Me.BusinessEntityCulture = businessEntityCulture

End Sub 'CreateBusinessEntity

> Locate the method EditBusinessEntity, which also makes references to not existing
properties in the business entity object. We'll need to assure that the object that stores the
language dependent attributes is correctly initialized.

'<summary>

' The following method will be called to initialize the internally used business

entity object for being edited. It will load the specified record from database;
' the record's primary key needs to be set before.

'</summary>

61

PRIMAVERA WebCentral SDK Manual

Private Sub EditBusinessEntity()

Dim businessLayer As New Business.Articles

Me.BusinessEntity = businesslLayer.Edit (WebContext.User.EngineContext,

Me.ArticleId)

Me.BusinessEntityCulture =

Me.BusinessEntity.ArticleCultures.GetItemByCulturelID (m_activeCulture)

If Me.BusinessEntityCulture Is Nothing Then
Me .BusinessEntityCulture = New Entities.ArticleCulture
Me.BusinessEntityCulture.ArticleID = BusinessEntity.ID
Me.BusinessEntityCulture.CultureID = m_activeCulture
Me.BusinessEntity.ArticleCultures.Add (BusinessEntityCulture)
End If

'initialize image button
WebImageSelectionPopUpButtonl.ImageHtml = Me.BusinessEntity.Image

WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

End Sub 'EditBusinessEntity

Navigate to the method UpdateBusinessEntity which is called whenever the component
needs to write down the changes made to an article to database. We'll need to serialize the
current values from the user interface to the article object.

'<summary>

' The following method will be called whenever it is necessary to write all

changes

or

' down to database. This method will update the existing record, which was edited,

' 1inserts a new record to the database.
'</summary>

Private Sub UpdateBusinessEntity ()

Me.BusinessEntity.Author = txtAutor.Text
Me.BusinessEntity.Date = txtDate.Value

Me.BusinessEntity.Image = txtImage.Text

Me.BusinessEntityCulture.Title = txtTitle.Text
Me.BusinessEntityCulture.Body = txtArticle.Text

Dim businessLayer As New Business.Articles

businessLayer.Update (WebContext.User.EngineContext, Me.BusinessEntity)

End Sub 'UpdateBusinessEntity

Now let’s implement the method which will be responsible for populating the drop down list
with the available cultures. The WebCentral Platform provides a method named
ListInstalledLanguages, which returns a table of all available languages. We'll use this

62

PRIMAVERA WebCentral SDK Manual

method to bind it against the drop down list’s data source.

'<summary>

' The following method will be called to bind the installed portal cultures
' with the dropdown that allows the user to select a culture.
'</summary>

Public Sub InitializeCultureSelection ()

If Not Page.IsPostBack() Then
Dim proxy As New Primavera.Platform.Security.Business.Parameters
cultureSelection.DataSource =

proxy.ListInstalledLanguages (WebContext.User.EngineContext)

cultureSelection.DataTextField = "Culture"
cultureSelection.DataValueField = "ID"
cultureSelection.SelectedIndex = 0
cultureSelection.DataBind ()

End If

If (m_activeCulture.Equals (Guid.Empty)) Then _

m_activeCulture = New Guid(cultureSelection.SelectedValue)

End Sub 'InitializePortalCultures

» Call the new method InitializeCultureSelection from the Page_Load event handler.

'<summary>

' The following event handler will be called whenever the page loads; place all

' initialization code here.
'</summary>
Protected Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

'initialize culture selection

InitializeCultureSelection ()

Me.WebImageSelectionPopUpButtonl.PanelMaster = Me.panelArticleDetails

Me.WebImageSelectionPopUpButtonl.PanelDetail = Me.panelImageSelection

Me.WebImageSelectionPopUpButtonl.WebImageSelectionControl =
Me.controlImageSelection

If Not Me.IsPostBack Then

Me.WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

End Sub 'Page Load

» Implement a new event handler called whenever the user changes the currently selected
culture in the web user control. This code needs to assure that the previous language
dependent attributes are correctly stored and show the language dependent values for the
new selected culture.

63

PRIMAVERA WebCentral SDK Manual

'<summary>

'</summary>

Private Sub cultureSelection SelectedIndexChanged(ByVal sender As Object,

ByVal e As System.EventArgs) Handles cultureSelection.SelectedIndexChanged

'store the updated values for the current culture
Me.BusinessEntityCulture.Title = txtTitle.Text

Me.BusinessEntityCulture.Body = txtArticle.Text

'change the current culture and show the culture dependent values

m_activeCulture = New Guid(cultureSelection.SelectedValue)

Me.BusinessEntityCulture =
Me.BusinessEntity.ArticleCultures.GetItemByCultureID(m activeCulture)

If Me.BusinessEntityCulture Is Nothing Then
Me.BusinessEntityCulture = New Entities.ArticleCulture ()
Me.BusinessEntityCulture.ArticleID = Me.BusinessEntity.ID
Me.BusinessEntityCulture.CultureID = m activeCulture
Me.BusinessEntity.ArticleCultures.Add (Me.BusinessEntityCulture)

End If

txtTitle.Text = Me.BusinessEntityCulture.Title

txtArticle.Text = Me.BusinessEntityCulture.Body

End Sub 'cultureSelection SelectedIndexChanged

Step 6.3 - Changes in the Visualization Component

Now let’s see what needs to be done in the visualization components. The user logged in has a
language associated, but also can change the default language using the country flags that

appear in the portal header. The WebContent.User object has significant information about the

current user and can be used to determine the current language for the user session. With this

information we now can easily perform the changes in the article list component, as we just need

to update the SQL query to reflect the currently selected culture.

> In the WebUI project, Open the file ArticleList.ascx.vb and locate the method BuildQuery.

Replace it's implementation so that it meets the following code segment:

Private Function BuildQuery () As String
Dim strSql As String = "SELECT TOP $1 * FROM KNB Articles "
strSgl &= vbCrLf & "INNER JOIN KNB ArticleCultures ON "

strsgl &= vbCrLf & " KNB ArticleCultures.ArticleID = KNB Articles.ID"
strSql &= vbCrLf & " AND KNB ArticleCultures.CultureID = @2 ORDER BY $3"

Return Platform.Engine.Business.SqlUtils.FormatSql (strSql,
propertyBag.NumArticles,
WebContext.User.Culture.CulturelD,

GetOrderByField())

End Function

64

PRIMAVERA WebCentral SDK Manual

Step 6.4 - Testing the multi-language support

>
>

»

Use the Visual Studio 2008 IDE to compile the solution in DEBUG mode.

Close the Visual Studio 2008 IDE and run the eModuleDeploy utility, which you will find in
the Tools folder of the PRIMAVERA WebCentral SDK.

Indicate the complete filename of our module’s solution and start the deployment process.

You might have noticed that we changed the database table structure for the multi-language

support. Please use the SQL Query Analyzer and the script you can find in appendix 17 [page
150] to update the database structure.

Currently, the portal Intranet just supports one single language. We will need to define this
portal as multi language. Therefore, launch the Site Administration utility and navigate to
Portais | Criacdo de Portais. Double-click the record for the Intranet portal and select the
Language tab. Add support for the English language to the Intranet portal and confirm.

Portal >_<

Identificaio | Comunidades | Idiomas |Metatags|

Idiomas suportados no portal

Idioma Anulado Adicionar

Portugués Nao

Idiomas por defeite

Mo case do idioma do utilizader ndo ser suportade no portal, indique qual o idioma que
devera ser usado, Indigue tambem o idioma que devers ser sugeride na criagéoe de
componentes para o portal,

Visuzlizacdo do portal: |P0rtugués u
Criag3o de componentes: |P0[mgués u
[Confirmar] [Anular] [Cancelar] [Ajuda]

Open a browser and navigate to the KnowledgeBase Administration page. Edit one of the
existing articles and try to edit the article in English.

6@- v [[] http:/stmschuetz/Intranet7PortaiRender aspPagelD=25a44 1h0- 15 4-423d-saca- 7954570721 || [42 % [(2]
— , . »
w o [@]nﬁanet—l’uwered by PRIMAVERA Enterprise Portals I ‘ - e ~ |2k Page » (G Tooks -

PORGAL 00 COLABORADOR

Home Desenvolvimento Comercial Marketing Administrativo Recursos Humanos Organizacdo Portais Knowledge Base 27 Fevereiro 200

¢ Home \ Knowledge Base ! Article Administration

Article Administration

Home

Culture [Inglés [~

Date |27-02-2007 v

Auther |Lsurs Jones

Image [

rativo Title |How to intagrate

Recursos Humanos B U E=E= = <>
Organizacio This subject its prone to some hot discussion, although there's

enough documentation on this theme ...
Portais

Knowledge Base

Article

T e el W~ o K =
& Local intranet ® 100% -

65

PRIMAVERA WebCentral SDK Manua

> Try to change the current language using the drop down listbox at the top of the form. The
language dependent values should be updated correctly.

» Confirm the modified article and navigate to the KnowledgeBase Article List. The list appears
in the current default language.

» Click on the english flag in the portal header. The KnowledgeBase Article List should now
appear in english.

6: ~ |] nto: instmschuetafiniranet7jPortalender. sspxiPagelD={T7c 106 76-£360-4677-8ez-257c e0c5503) || |42 /[| | |-
% & [@xnmet-vuwerea by PRIMAVERA Enterprise Portals [‘ % - B & - |o-eage v G Took -
PORCAL 00 COLABORADDR = ot =
-~ -we g s
p y ,

ento Comercial Marketing Administrative Recurses Humanes Organizaséo Pertais Knowledge Base 27 February 2007 BN

Hame \ Knowledge Base \ Knowledge Base

Developing an Module
3im Button
- This article d
Howr to integrate
E Laura Jon:
sl Talking about NET integration ...
(=2l -7 o2-2007 0:00:00

Knowledge Base

Knowle:
Detail

Article Administration

B oamw W . A =

Done S Local intranet H100%

Step 7 — Supporting Approvals

The WebCentral Platform for Approvals permits the definition of workflows and approval states.
The PRIMAVERA WebCentral uses this approval platform in some human resources components
as well as in the content management components, like press releases, messages, etc.

This exercise will explain how our customized KnowledgeBase component can take advantage of
the approval platform. We'll also dive into content categories. Categories are used to differentiate
content of the same type. See, for example, internal messages and public messages. Categories
also permit to define permissions on a different level than component based. Having the category
model implemented, you will be able to define permissions per content category type, e.g. user
xpto does not have permissions to view internal messages.

Step 7.1 - Preparing the Business Entities for Approvals

First of all, we'll need some new private attributes and public accessor properties in the business
entity class. These new attributes will store information about the current approval state as well
as the associated categories for a given KnowledgeBase article.

» Open the project Primavera.KnowledgeBase.Entities and edit the file Article.vb that
contains our business entity class declaration. Insert the following variable declarations to
the list of private member attributes:

Private m _article As String
Private m_published As Boolean
Private m categories As Primavera.Platform.Services.Entities.EntityCategories =

New Primavera.Platform.Services.Entities.EntityCategories

66

PRIMAVERA WebCentral SDK Manua

Private m_locked As Boolean

Private m approvalld As Guid
» Add the new public accessor properties to the KnowledgeBase Article Entity:

<BusinessEntityField ("Article")>
Public Property Article() As String
Get
Return m article
End Get
Set (ByVal Value As String)
m_article = Value
End Set

End Property

<BusinessEntityField ("Published", IsReadOnly:=True)>
Public Property Published() As Boolean
Get
Return m published
End Get
Set (ByVal Value As Boolean)
m _published = Value
End Set

End Property

<BusinessEntityDetailAttribute (ForeignField:="EntityID")> _
Public Property Categories() As
Primavera.Platform.Services.Entities.EntityCategories
Get
Return m categories
End Get
Set (ByVal Value As Primavera.Platform.Services.Entities.EntityCategories)
m categories = Value
End Set

End Property

<BusinessEntityField ("Locked", IsReadOnly:=True)> _
Public Property Locked() As Boolean
Get
Return m locked
End Get
Set (ByVal Value As Boolean)
m_locked = Value
End Set

End Property

<BusinessEntityField ("ApprovalID", IsReadOnly:=True)>
Public Property ApprovalID() As Guid
Get

Return m approvalId

PRIMAVERA WebCentral SDK Manua

End Get
Set (ByVal Value As Guid)

Value

m_approvalld
End Set

End Property

> Open the file ArticleList.vb in the folder PropertyBags and declare a new private member

variable as well as a new public accessor property:

Private m_colCategories As New GuidCollection
Public Property Categories() As GuidCollection
Get
Return m colCategories
End Get
Set (ByVal Value As GuidCollection)
m _colCategories = Value
End Set

End Property

Step 7.2 - Preparing the Data Services for Approvals

Currently, our Data Service Layer does not implement any methods - in fact it inherits all
standard operations from its base class DataServiceBase. We now need to insert two
customized methods to the data service layer, which are responsible for querying approval

information from the database.

» Open the file Article.vb from the project Primavera.KnowledgeBase.Data and insert the

following two methods to the class.

'<summary>

v

' to the specified categories.

'</summary>

Public Function GetApprovalRuleID(_

ByVal objContext As Primavera.Platform.Engine.Entities.EngineContext,

The following method will query the approval rule which was associated to

ByVal objCategories As Primavera.Platform.Engine.Entities.Fields) As Guid

Dim strSQL As String = "SELECT TOP 1 [ApprovalRuleID] FROM [PLT Categories] " _

& "WHERE [ID] IN $1 AND [ApprovalRuleID] IS NOT NULL"
Dim strCats As String = String.Empty

Dim objField As Primavera.Platform.Engine.Entities.Field

For Each objField In objCategories

strCats = strCats + SqglUtils.FormatSqgl("@1l, ", CType (objField.Value,

Next
If (strCats.Length > 0) Then
strCats = " (" + strCats.Substring(0, strCats.Length - 2) + ")"
End If
strSQL = SqglUtils.FormatSqgl (strSQL, strCats)

Guid))

68

PRIMAVERA WebCentral SDK Manua

Dim objCmd As New System.Data.SglClient.SglCommand (strSQL,

objContext.RequestConnection)

Dim guidApprovalRulelID As Guid = CType (objCmd.ExecuteScalar (), Guid)
objContext.ReleaseConnection ()

objCmd.Dispose ()
Return guidApprovalRuleID
End Function 'GetApprovalRuleID

'<summary>

v

The following method will return identifier and title of a knowledge
' Dbase article for a given approval instance identifier.

'</summary>

Public Sub GetContentFromRuleID(_

ByVal objContext As Primavera.Platform.Engine.Entities.EngineContext,
ByVal guidApprovalld As Guid,

ByRef guidArticleId As Guid,

ByRef strTitle As String)

Dim strSQL As String = SqlUtils.FormatSql ("SELECT [ID], [Article] " _
& "FROM [KNB Articles] WHERE [ApprovalID] = @1", guidApprovallId)

Dim objTable As DataTable = List.List (objContext, strSQL)

If (objTable.Rows.Count = 1) Then

guidArticleId = CType (objTable.Rows (0) ("ID"), Guid)
strTitle = CType (objTable.Rows (0) ("Article"), String)
End If
End Sub
End Class

Step 7.3 - Preparing the Business Layer for Approvals

»

In the Primavera.KnowledgeBase.Business project, open the file Articles.vb and
implement a new method which will verify the article publishing permission for the current
user. This method will simply call a method of its base class to check either the current user
has permission to publish a message for the associated article categories.

Public Overloads Function VerifyPublishingPermission (ByVal Context As
EngineContext, ByVal ID As Guid, ByRef OutMessage As String) As Boolean
Return BaseVerifyPublishingPermission (Context, ID, OutMessage)

End Function

Approval rules will be invoked whenever a user tries to publish an article. Currently, our
administration component does not support the publishing concept - an article is
automatically published whenever the user saves it. In order to support the publishing
concept, we'll need to add some methods to the Article class:

Public Sub Publish (ByVal Context As EngineContext, ByVal ID As Guid)
BasePublish (Context, ID)
End Sub

69

PRIMAVERA WebCentral SDK Manua

Public Sub UnPublish (ByVal Context As EngineContext, ByVal ID As Guid)
BaseUnPublish (Context, ID)
End Sub

Public Overloads Sub Lock (ByVal objContext As EngineContext,
ByVal guidID As Guid, ByVal guidApprovalID As Guid)
BaseLock (objContext, guidID, guidApprovallD)
End Sub

Public Overloads Sub UnLock (ByVal objContext As EngineContext,
ByVal guidID As System.Guid)
BaseUnLock (objContext, guidID)
End Sub

» Implement the two methods which are necessary to support categories for this module. Still
in the Article class, add the following two methods:

Public Sub MoveCategorylItems (ByVal Context As EngineContext, ByVal SourceCategoryID
As Guid,
ByVal DestCategoryID As Guid)
BaseMoveCategoryItems (Context, SourceCategoryID, DestCategoryID)
End Sub

Public Sub RemoveCategoryItems (ByVal Context As EngineContext, ByVal CategoryID As
Guid)
BaseRemoveCategoryltems (Context, CategoryID)
End Sub

» Our business layer still needs to wrap the calls to the two methods that we introduced to the
data layer to support the approvals. Insert the following two methods to the Article class.

Public Function GetApprovalRuleID(ByVal objContext As EngineContext,

ByVal objCategories As Primavera.Platform.Engine.Entities.Fields) As Guid

Dim objDSO As New Data.Articles
Return objDSO.GetApprovalRulelID (objContext, objCategories)

End Function

Public Sub GetContentFromRulelID (ByVal objContext As EngineContext,
ByVal guidApprovalID As Guid, ByRef guidArticleID As Guid, ByRef strTitle As

String)

Dim objDSO As New Data.Articles
objDSO.GetContentFromRuleID (objContext, guidApprovalID, guidArticlelD,
strTitle)
End Sub

70

PRIMAVERA WebCentral SDK Manua

Step 7.4 - Implementing Approvals in the Module

>

Open the project Primavera.KnowledgeBase.Modules and add a reference to the
assembly Primavera.Platform.Services.Business, which can be found in the PRIMAVERA
WebCentral SDK bin folder.

In the Approvals folder, edit the file ApprovalTypesIDs.vb. This class contains unique
approval identifiers, which are used by the PRIMAVERA WebCentral Platform to distinguish
between the various types of approvals. Each content type which is subject to approval must
have a unique identifier.

Public Shared ReadOnly Property Articles() As Guid
Get
Return New Guid("{448E2B4B-979E-4cla-878E-769BDOD7FEFD}")
End Get

End Property

Open the file ApprovalInstances.vb for editing. This class contains all the logic for the
article approval, which are quite a few lines of code. Please refer to appendix 18 [page 152]
to see the necessary implementation.

Please make sure that the identifier MyModuleID, which is declared at the top of the file,
matches the identifier for your module (you can consult this identifier in the resource file
Res.resx for the project Primavera.KnowledgeBase.Modules).

The file ApprovalRules.vb has the approval rule configuration for this module. Localize the
method ApprovalRuleConfig and implement the following lines:

Public Function ApprovalRuleConfig(ByVal guidTypeID As System.Guid)

As ApprovalRuleConfig Implements IApprovalRules.ApprovalRuleConfig

'In this module all content types use the same configuration
Dim objRuleConfig As New ApprovalRuleConfig
With objRuleConfig
.ID = guidTypeID 'Unique id for each content type
.StartStateBlocked = True
.EndStatesBlocked = True
.IntermediateStatesBlocked = False

.IntermediateStatesAllowed = True

.StartState.ID = New Guid (" {FB596820-9BF3-45b8-BOE3-3EE9A7A16DC8}")

.StartState.Name = "Pending"

.EndApprovedState.ID = New Guid("{67999B91-17E1-4cdb-A161-539767A8C408}")
.EndApprovedState.Name = "Published"

.EndRejectedState.ID = New Guid("{86B398B6-5386-4001-B324-5E4DEO3CDI9CF}")

.EndRejectedState.Name = "Rejected"

.AllowNotifications = True

.SimpleApprovalsOnly = False

End With

71

PRIMAVERA WebCentral SDK Manua

Return objRuleConfig

End Function

Now we just need to enable approvals for our modules - this is done in the Approvals class.
Localize the methods SupportRules and SupportInstances and change their return values
from False to True.

The method ListTypes returns a collection of supported content approvals. Here we need to
make sure that our new approval type is correctly registered and returned to the caller.

Public Function ListTypes () As ServicelList Implements IApprovals.ListTypes
Dim objCol As New ServicelList
objCol.Add (ApprovalTypesIDs.Articles, "Article Categories")

Return objCol

End Function

Step 7.5 - Implementing Categories in the Module

>

Open the file CategoryTypelds.vb, which you can find in the folder Categories of the
project Primavera.KnowledgeBase.Modules. Let’s define a new identifier for the category
of KnowledgeBase articles.

Public Shared ReadOnly Property Articles() As Guid
Get
Return New Guid("{BO9F475F4-2C54-463f-8FD9-F6318EDAEY71}")
End Get

End Property

The class Category will provide further information on the module’s supported categories.
Locate the method List and modify the code so that it returns the new category as result.

Public Function List () As ServicelList Implements ICategories.List

Dim objCol As New ServicelList
objCol.Add (CategoryTypesIDs.Articles, "Categorias de Artigos")
Return objCol

End Function

Next we need to specify the categories details, which takes place in the Edit method. Here
we also will let the PRIMAVERA WebCentral Platform know that the new category supports
the approval workflow.

Public Function Edit (ByVal CategoryTypelID As System.Guid) As Category Implements

ICategories.Edit

Dim objCat As New Category

72

PRIMAVERA WebCentral SDK Manua

If CategoryTypeID.Equals (CategoryTypesIDs.Articles) Then
objCat.Name = "Categorias de Artigos"
objCat.SupportsApprovals = True
objCat.ApprovalTypeID = ApprovalTypesIDs.Articles

Else
Return Nothing ' Item not found

End If

objCat.ID = CategoryTypelD
Return objCat

End Function

Step 7.6 — Updating the Article Administration UI

The user interface that we currently have for introducing the KnowledgeBase Articles is a bit

inappropriate for the new functionality that we are implementing - we need to be able to attach
categories to the article as well as support the publishing mechanism. In this step we'll polish the
current user interface to support these new features.

> First of all, we will have to make sure that only published articles appear in the list of

KnowledgeBase Articles. Open the project Primavera.KnowledgeBase.WebUI and edit the

file ArticleList.ascx.vb. Locate the BuildQuery method and add an additional SQL WHERE
statement to the query that is returned by the method:

Private Function BuildQuery() As String
Dim strSgl As String = "SELECT TOP $1 * FROM KNB Articles "
strSsgl &= vbCrLf & "INNER JOIN KNB ArticleCultures ON "
strsgl &= vbCrLf & " KNB ArticleCultures.ArticleID = KNB Articles.ID"
strSql &= vbCrLf & " AND KNB ArticleCultures.CultureID = @2 " _
& "WHERE KNB Articles.Published = 1 ORDER BY $3"
Return Platform.Engine.Business.SqlUtils.FormatSqgl (strSql,
propertyBag.NumArticles,
WebContext.User.Culture.CulturelD,
GetOrderByField())

End Function

> Now let’s get to the administration user interface. Open the ArticleAdminDetail.ascx file
and register three new user controls, provided by the PRIMAVERA WebCentral Platform,
which will allow us to select categories for the KnowledgeBase Articles and display
information messages.

<%@ Register TagPrefix="WebC" TagName="WebCategoryPopUpButton"
Src="../Primavera.Platform/WebCategoryPopUpButton.ascx" %>
<%@ Register TagPrefix="WebC" TagName="WebCategorySelection"
Src="../Primavera.Platform/WebCategorySelection.ascx" %>

<%@ Register TagPrefix="WebC" TagName="WebGridMessage"

Src="../Primavera.Platform/WebGridMessage.ascx" %>

PRIMAVERA WebCentral SDK Manua

> Place the message box control right before we declare the article detail panel - this message
box will be used to display information about the current state of the KnowledgeBase Article
we are editing.
(ommitted)
<WebC:webgridmessage id="messageBox" visible="False"
runat="server"></WebC:webgridmessage>

<asp:Panel ID="panelArticleDetails" runat="server" Visible="True">

Ll==
The panel contains all controls which are necessary to insert/edit a
new/existing
item; it will demonstrate some special controls, such as the Infragistics
DateTime
picker as well as the HTML editor, for composing the article body. This
panel will
be hidden whenever the user clicked the image button. To select an image
for the
message this panel will be hidden and the image selection panel (see below)
will be
shown.
——>
<table>
(ommitted)

» In the second row of the main table, right below the culture selection row, insert a new row
which will allow us to define a text based unique article reference - this reference is later
used in the list of pending approvals to identify an article.

(ommitted)
<tr>
<!-- Culture Selection Box -->
<td class="width s alignRight">Culture</td>
<td class="width 1">
<asp:DropbDownList ID="cultureSelection"
runat="server" CssClass="data input width x1" AutoPostBack="True">
</asp:DropDownList></td>
</tr>
<tr>
<!-- Unique Article Key -->
<td class="width s alignRight">Article Reference</td>
<td class="width 1">
<asp:textbox id="txtArticleRef" onblur="this.className='data_ input width x1';"
onfocus="this.className='data input over width 1';"
runat="server" CssClass="data_input width x1" MaxLength="50">
</asp: textbox>
</td>
</tr>
<tr>

(ommitted)

74

PRIMAVERA WebCentral SDK Manua

> At the bottom, right before the main table is being closed, insert a new row which will
contain the button to select the associated categories for the article.

(ommitted)
<tr>
<!-- Articles Categories -->
<td class="width_ s alignRight">Categories</td>
<td class="width_ x1">
<WebC:webcategorypopupbutton id="categorySelection" runat="server">
</WebC : webcategorypopupbutton>
</td>
</tr>
</table>
<!-- initialize the HTML editor (control id txtArticle) -->
<script language="javascript" defer>
editor generate ('<%=ID2Name (Me.ClientID) %>:txtArticle');
</script>

(ommitted)

> We also need a new button between the Save -and Back button - this button will allow us to

publish/ unpublish the current KnowledgeBase Article. In the table that specifies the
command buttons, add a new column containing the Publish button.

(ommitted)
<table class="filter btns" cellSpacing="0" cellPadding="0" border="0">
<tr>
<td>
<asp:button id="btnConfirm"
onmouseover="this.className='btn m color over';"
onmouseout="this.className="'btn m color';"
runat="server" CssClass="btn m color" Text="Confirm">
</asp:button></td>
<td>
<asp:button id="btnPublish"
onmouseover="this.className='btn m color_ over';"
onmouseout="this.className='btn m color';"
runat="server" CssClass="btn_m color" Text="Publish">
</asp:button></td>
<td>
<asp:button id="btnBack"
onmouseover="this.className='btn m color over';"
onmouseout="this.className='btn m color';"
runat="server" CssClass="btn m color" Text="Back">
</asp:button></td>
</tr>
</table>

(ommitted)

75

PRIMAVERA WebCentral SDK Manua

> Now we just need to declare the category selection panel at the bottom of the file. The
category selection panel will be shown whenever the user clicks on the category selection

button.

(ommitted)

<asp:panel id="panellmageSelection" runat="server" Visible="False">
<!-- image selection control panel;
the image selection button in the details panel.

<WebC:webimageselection id="controlImageSelection" runat="server">

</WebC:webimageselection>

</asp:panel>

<asp:panel id="panelCategorySelection" runat="server" Visible="False">

<!-- category selection control; will only be shown when the user clicked on

the category selection button -->

<WebC:webcategoryselection id="controlCategorySelection" runat="server">

</WebC:webcategoryselection>

</asp:panel>

will only be shown when the user clicked on

» In order to use the approval engine that the PRIMAVERA WebCentral Platform provides we’ll
need references to the assemblies

- Primavera.Platform.Services.Entities
- Primavera.Platform.Services.Business

to the project Primavera.KnowledgeBase.WebUI. These assemblies can be found in the
bin folder of the PRIMAVERA WebCentral SDK installation path.

» To shorten up some variable type declaration, let’'s import these assemblies at the top of the
code-behind file ArticleAdminDetail.ascx.vb.

Imports Primavera.Platform.WebUI.Controls

Imports Primavera.Platform.Services.Entities

Imports Primavera.Platform.Services.Business

» Like already done before, we declare the controls borrowed by the PRIMAVERA WebCentral
Platform in class ArticleAdminDetail. Note that these variables might already be declared
by the Visual Studio designer and that you might remove these declarations from the file

ArticleAdminDetail.ascx.designer.vb.

(omitted)

'declare user controls referenced from the PRIMAVERA WebCentral Platform

'here in the code behind file,

Protected WithEvents

WebImageSelectionPopUpButtonl As

Primavera.Platform.WebUI.WebImageSelectionPopUpButton

Protected WithEvents
Primavera.Platform.WebUI

Protected WithEvents

Primavera.Platform.WebUI.

Protected WithEvents

Primavera.Platform.WebUI.

Protected WithEvents

controlImageSelection As

.WebImageSelection

categorySelection As
WebCategoryPopUpButton
controlCategorySelection As

WebCategorySelection

using the exact variable name as stated in the ascx

messageBox As Primavera.Platform.WebUI.Controls.WebGridMessage

76

PRIMAVERA WebCentral SDK Manual

(omitted)

» We also will repeatedly need the unique module —and approval type identifier, so it's good
practise to declare a variable with these values. Please make sure that the below values

match with the ones in your project. See the Primavera.KnowledfeBase.Module project
for reference.

'private constants
Private moduleId As New Guid("39af2ebe-e68e-4111-9410-24de9682421d")
Private moduleApprovalTypeld As New Guid("448E2B4B-979E-4cla-878E-769BDOD7FEFD")

» In several places we will show messages to the user, using the MessageBox component
provided by the PRIMAVERA WebCentral Platform. To easen up the usage, we’ll provide a
method which does the property initialization and visualization stuff.

'<summary>

' The following method will show the message box control and initialize

' the controls properties, like title, message and style.
'</summary>
Public Sub ShowMessage(_
ByVal Type As Platform.WebUI.Controls.WebGridMessageType,
ByVal Title As String,

ByVal Message As String)

messageBox.Visible = True
messageBox.MessageType = Type
messageBox.MessageTitle = Title
messageBox.MessageText = Message
messageBox.Refresh ()

End Sub

> A KnowledgeBase Article must be associated at least to one category - this is a requirement
which we’ll need to validate before we update the record in the database. Implement a new

method which checks this precondition and raise an exception if the article does not meet the
validation rules.

'<summary>

' The following method will validate the current artucle before it

' 1s going to be written to database.
'</summary>

Private Sub ValidateBusinessEntity()

Dim validationMessage As String = String.Empty
If BusinessEntity.Categories.Count <= 0 Then
Throw New System.Exception ("The Knowledge Base Article "

& "needs to be associated to at least one category")

End Sub 'ValidateArticle

77

PRIMAVERA WebCentral SDK Manual

We already implemented the ShowBusinessEntity method a while ago to initialize the user
interface controls with the values from the business entity object. However, we now have a
new attribute, the article reference, which we'll need to initialize. Insert a new line to this
method, which will initialize the article reference textbox.

'<summary>

' The following method will be called whenever it is necessary to initialize

v

the user control with values from the currently loaded business entity. This
' 1is basically everytime the case, when a user edits an existing record.
'</summary>

Private Sub ShowBusinessEntity ()

txtArticleRef.Text = Me.BusinessEntity.Article
txtAutor.Text = Me.BusinessEntity.Author
txtArticle.Text = Me.BusinessEntityCulture.Body
txtDate.Value = Me.BusinessEntity.Date
txtTitle.Text = Me.BusinessEntityCulture.Title

txtImage.Text = Me.BusinessEntity.Image

'update image selection control
WebImageSelectionPopUpButtonl.ImageHtml = Me.BusinessEntity.Image

WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

End Sub 'ShowBusinessEntity

The method UpdateBusinessEntity implements the opposite way - writing the values from
the user interface to the business entity object. Here, we also need to serialize the article
reference. This is also a good place to do the business entity validation, as this method is
usually called whenever the entity object is being serialized to database.

'<summary>

' The following method will be called whenever it is necessary to write all

changes

' down to database. This method will update the existing record, which was edited,
' inserts a new record to the database.
'</summary>

Private Sub UpdateBusinessEntity ()

Me.BusinessEntity.Article = txtArticleRef.Text
Me.BusinessEntity.Author = txtAutor.Text
Me.BusinessEntity.Date = txtDate.Value
Me.BusinessEntity.Image = txtImage.Text
Me.BusinessEntityCulture.Title = txtTitle.Text
Me.BusinessEntityCulture.Body = txtArticle.Text
Me.ValidateBusinessEntity ()

Dim businessLayer As New Business.Articles
businessLayer.Update (WebContext.User.EngineContext, Me.BusinessEntity)

End Sub 'UpdateBusinessEntity

78

PRIMAVERA WebCentral SDK Manual

The method CreateBusinessEntity is called whenever the user chose to create a new
KnowledgeBase Article. This method is responsible for initializing the internally used business
entity object. Because of the new attribute, as well as the categories, we'll need to update this
code to initialize these properties.

'<summary>

' The following method will be called whenever the user wishes to create
' a new record. This method initializes a new business entity object.
'</summary>

Private Sub CreateBusinessEntity()

'initialize new business entity

Dim businessEntity As New Entities.Article
businessEntity.ID = Guid.NewGuid()
businessEntity.Article = String.Empty
businessEntity.Author = WebContext.User.UserName
businessEntity.Date = DateTime.Now

businessEntity.Image = String.Empty

Dim businessEntityCulture As New Entities.ArticleCulture
businessEntityCulture.ArticleID = businessEntity.ID
businessEntityCulture.CultureID = m activeCulture

businessEntity.ArticleCultures.Add (businessEntityCulture)

'categories
categorySelection.SelectedCategories = New Arraylist

categorySelection.SetConfigurationParameters ()

'initialize image button
WebImageSelectionPopUpButtonl.ImageHtml = businessEntity.Image

WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

Me.BusinessEntity = businessEntity

Me.BusinessEntityCulture = businessEntityCulture

End Sub 'CreateBusinessEntity

» Same procedure with the method EditBusinessEntity. We'll need to initialize the category
selection control with the categories associated to the loaded KnowledgeBase Article as well
initialize the Publish buttons caption in dependency of the current publishing state (the
caption of this button toggles between Publish and Unpublish)

'<summary>

' The following method will be called to initialize the internally used business

' entity object for being edited. It will load the specified record from database;
' the record's primary key needs to be set before.

'</summary>

Private Sub EditBusinessEntity()

79

PRIMAVERA WebCentral SDK Manual

Dim businessLayer As New Business.Articles

Me.BusinessEntity = businesslLayer.Edit (WebContext.User.EngineContext,
Me.ArticleId)

Me.BusinessEntityCulture =

Me.BusinessEntity.ArticleCultures.GetItemByCultureID (m activeCulture)

If Me.BusinessEntityCulture Is Nothing Then
Me.BusinessEntityCulture = New Entities.ArticleCulture
Me.BusinessEntityCulture.ArticleID = BusinessEntity.ID
Me.BusinessEntityCulture.CultureID = m activeCulture

Me.BusinessEntity.ArticleCultures.Add (BusinessEntityCulture)

'categories

categorySelection.SelectedCategories = New ArrayList

For Each Category As EntityCategory In Me.BusinessEntity.Categories
categorySelection.SelectedCategories.Add (Category.CategoryID)

Next

categorySelection.SetConfigurationParameters ()

'initialize image button
WebImageSelectionPopUpButtonl.ImageHtml = Me.BusinessEntity.Image

WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

'show the correct text for the publishing/unpublishing button
btnPublish.Text = IIf(Me.BusinessEntity.Published, "Unpublish", "Publish")

'show information whenever the current article is waiting for approval
If Me.Mode = VisualizationMode.Edition _

AndAlso Not Me.BusinessEntity Is Nothing _

AndAlso Me.BusinessEntity.Locked Then

Me . ShowMessage (WebGridMessageType.Info, String.Empty, _

"An approval is pending for this article")

End If

End Sub 'EditBusinessEntity

» The next method GetApprovalID will try to query the approval typ id that needs to be
applicated to the current article. The approval type depends on the categories that were
associated to the article and which approval rules have been associated to these categories.
This method will return an empty Guid if no approval rule has been associated to the
categories, otherwise the approval rule id.

'<summary>

' The following method will return the approval identifier for the specified
' categories.

'</summary>

Private Function GetApprovalRulelID(ByVal objCategories As _

PRIMAVERA WebCentral SDK Manual

Primavera.Platform.Services.Entities.EntityCategories) As Guid
Dim objFields As New Primavera.Platform.Engine.Entities.Fields
Dim objCat As Primavera.Platform.Services.Entities.EntityCategory

Dim objBusiness As New Business.Articles

For Each objCat In objCategories
objFields.Add (objCat.CategoryName, objCat.CategoryID)
Next

Return objBusiness.GetApprovalRulelID (WebContext.User.EngineContext, objFields)
End Function 'GetApprovalRuleID

> The next method will check if the currently edited KnowledgeBase Article is locked, which
means, it was published and sent to approval, but has not been approved yet. In this case,
the user receives a message informing him on this matter.

'<summary>

v

The following method will check if the specified KnowledgeBase article
' is currently locked.
'</summary>
Private Function ArticleIsLocked(ByVal guidID As Guid) As Boolean
Dim objBusiness As New Business.Articles
Return DirectCast (objBusiness.EditField(_
WebContext.User.EngineContext, guidID, "Locked"), Boolean)

End Function 'ArticleIsLocked

» The following method will be called whenever an article has been sent to approval. This flag
in the business entity object, in conjunction with the Published flag, allows us to easily
determine the state of the article.

'<summary>

v

The following method will set the locked flag and update the
' approval identifier for the specified article

'</summaery>

Private Sub LockArticle (ByVal guidArticleID As Guid, ByVal guidApprovallD As Guid)

Dim objBusiness As New Business.Articles
objBusiness.Lock (WebContext.User.EngineContext, guidArticleID, guidApprovallD)
ShowMessage (WebGridMessageType.Info, String.Empty,

"The new article has been submitted to approvation.")

End Sub 'LockArticle

> Now it’s time to implement the method which actually starts the approval for the business
entity object. This method will sent the article for approval to the responsible user and
broadcasts notification messages, if so configured.

'<summary>
Al

Start Article Approval

'</summary>

81

PRIMAVERA WebCentral SDK Manual

Private Function StartApproval (ByVal guidArticleID As Guid,
ByVal guidApprovalRuleID As Guid, ByRef guidApprovalID As Guid) As ApprovalResponse
Dim objBusiness As New Platform.Services.Business.ApprovalServices
Dim objRequest As New ApprovalRequest
With objRequest
.ApprovallD = guidApprovallD
.ApprovalRuleID = guidApprovalRuleID
.ModuleID = moduleId
.TypeID = moduleApprovalTypeld
End With

Return objBusiness.StartApproval (WebContext.User.EngineContext, objRequest)

End Function 'StartApproval

» The next method is a high-level method, which is called directly from the Publish button
event handler. This method actually checks if the article is subject to approval and
respectively starts the approval process calling the StartApproval method. The article will
be directly saved and publish if it does not have any category with approval rule associated.

Private Function ApprovalAndPublish (Optional ByRef blnLocked As Boolean = False) As

Boolean

'instanciate business object

Dim objBusiness As New Business.Articles

'Default result (everything OK)

ApprovalAndPublish = True

'Get applicable approval rule

Dim guidApprovalRulelID As Guid = GetApprovalRulelID (BusinessEntity.Categories)

'Subject to approval?
If guidApprovalRuleID.Equals (Guid.Empty) Then
'Publish the KnowledgeBase Article
objBusiness.Publish (WebContext.User.EngineContext, BusinessEntity.ID)
Else
'Register the approval
Dim guidApprovalID As Guid = Guid.NewGuid
Dim objResponse As ApprovalResponse = StartApproval (BusinessEntity.ID,
guidApprovalRuleID, guidApprovallID)
'The approval succeeded?
If objResponse.Executed Then
'If the approval whas not auto ended, lock the content
If (Not objResponse.Finished) Then '
LockArticle (BusinessEntity.ID, guidApprovallID)
blnLocked = True
Else
objBusiness.Publish (WebContext.User.EngineContext,
BusinessEntity.ID)
End If

82

PRIMAVERA WebCentral SDK Manua

Else
ApprovalAndPublish = False 'Approval failed
End If
End If
End Function 'ApprovalAndPublish

> Even though we hid the message box in the ASCX file we need to make sure that it’s hidden
with every server roundtrip to avoid that expired information messages are shown to the
user. Place the following line in the Page_Load event handle.

'hide the message box

messageBox.Visible = False

> Create a new event handler for the category selection control. This method will be called
when the user associated categories to the article and clicked on the Confirm button. We
need to update the business entity object’s category properties with the associated
categories.

Private Sub categorySelection CategorySelected(_
ByVal selectedCategories As System.Collections.ArrayList)

Handles categorySelection.CategorySelected

Dim entityCategories As New
Primavera.Platform.Services.Entities.EntityCategories

Dim entityCategory As Primavera.Platform.Services.Entities.EntityCategory

For Each category As Guid In selectedCategories
entityCategory = New Primavera.Platform.Services.Entities.EntityCategory
entityCategory.CategoryID = category
entityCategories.Add (entityCategory)

Next

Me.BusinessEntity.Categories = entityCategories

End Sub 'WebCategoryPopUpButtonl CategorySelected

» The last step is implementing the code for the Publish button, which actually treats the
publishing and unpublishing process, and makes use of the helper methods, which we coded
before.

Private Sub btnPublish Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnPublish.Click

Try
Dim businessObject As New Business.Articles
If Me.BusinessEntity.Published Then
businessObject.UnPublish (WebContext.User.EngineContext,

BusinessEntity.ID)

'refresh the business entity object from database

Me.ArticlelId = BusinessEntity.ID

83

PRIMAVERA WebCentral SDK Manua

Me.EditBusinessEntity ()

'show publication message
Me.ShowMessage (WebGridMessageType.Info, String.Empty,
"Publication has been cancelled with success")
Else
'update the business entity from the current user interface's values

Me.UpdateBusinessEntity ()

Dim locked As Boolean = False
Dim returnMessage As String = String.Empty
Dim result As Boolean = Me.ApprovalAndPublish (locked)
If locked Then
Me.ShowMessage (WebGridMessageType.Info, String.Empty,
"Article has been saved and waits for approval.")
Else
Me.ShowMessage (WebGridMessageType.Info, String.Empty,
"Publication has been executed with success.")

End If

'refresh the business entity object from database
Me.ArticleId = BusinessEntity.ID
Me.EditBusinessEntity ()

End If

Catch ex As Exception

Me.ShowMessage (WebGridMessageType.Error, String.Empty, ex.Message)

End Try
End Sub

Step 7.7 — Testing the Approval and Category Support
» Use the Visual Studio 2008 IDE to compile the solution in DEBUG mode.

» Close the Visual Studio 2008 IDE and run the eModuleDeploy utility, which you will find in
the Tools folder of the PRIMAVERA WebCentral SDK.

» Indicate the complete filename of our module’s solution and start the deployment process.

» In appendix 19 [page 157] you will find the SQL script that is necessary to reflect the
changes in the database. Run this script over the WebCentral database using SQL Query
Analyzer.

» After the deployment process has completed, launch the Site Administrator application and
specify a new approval rule for the KnowledgeBase Articles. Specify ana.casaco as
responsible for approving the articles.

84

PRIMAVERA WebCentral SDK Manual

» Confirm the new Approval Rule and associate it to the KnowledgeBase Article category
Artigos Técnicos. From now on, all articles that were associated to this category will be

»

Propriedades da Aprovagdo...

Nome:

|Apr0\rado?

Tipo de Aprovacao:

|Simples (basta & aprovacio de um responsavel)

Aprovadores:

|Uﬁ|izad0res (da prépria organizacio)

Disponiveis Selecdionados:
Utilizador Organiz| Utilizador OrganizacE
Admin Minha C| Ana.Casaco Minha Crga
Ana.Casaco Minha C|
Ana.Pinto Minha C| =
Anonymous Minha C|
Carla. Azevedo Minha C!
Filipe.Dias Minha C
Filomena.Paulo Minha C.
Jozo.Fonseca Minha C[™
A — B) a)

[Caonfirmar][Cancelar][

Ajuda]

subject to being approved by ana.casaco.

&, Portais - U[Jj Ajuda

= Site Administrator
= Portais
Criagéo de Portais
Desenho de Portais
= Aprovagfes
Regras de Aprovacdes
= Seguranca
Comunidades
Organizagdes
Grupos Internos
Utilizadores Internos
Utilizadores Externos
= Pardmetros
Sistema
Categorias

Ficheiro Portais Aprovacdes Seguranga Pardmetros Ajuda

@, site PRIMAVERA _

Categorias

& @ Médulos Disponiveis

eAdministradg
eProdutividad|
(& KnowledgeBa
{& Categoria:
PRIMAVERA H
PRIMAVERA H
PRIMAVERA H
PRIMAVERA H
PRIMAVERA §
PRIMAVERA §
@ SiteBuilder

Pronto

Categoria - Administragio

{3 Nova (7] Editar | % Anular %] Mover] Mover Itens [OJ] Visualizar Itens

Idioma: <Cédigos Categorias> _ h
Categorias |
[(£ Categoriss de Artigos
i Hirtges Benicos |
Permissdes
Entidade Aceder Criar Editar Remover Publicar

» | Ansnima

Minha Comunidade

Parceiros

Nova Remover

Launch your web browser and navigate to the KnowledgeBase administration component.
Create a new KnowledgeBase article and associate it to the category that is subject to

approval. Try publishing the article and you’ll see that the article has been sent to approval.

85

PRIMAVERA WebCentral SDK Manual

- |g http:/fwstmschuetz/fintranet?/PortalRender.aspx?PagelD=dc0c8 19b-088a-43d8-3a93-5cd5cf39b9a5 M‘E‘ ‘E‘ ‘Z: gle Hp '|

@ - @P_age - @Tgo\s -

Sk

6"\

e 4 [glnhanat—Puwered by PRIMAVERA Enterprise Portals] I [

I

PORGAL DO COLABORADOR

ome Desenvolvimento Comercial Marketing Administrativo Recursos Humanos Organizacio Portais Knowledge Base 1 Margo 2007

Home % Knowledge Base \ Knowledge Base Admin

Knowledge Base Admin

Hame

nvalvimento INFORMACAQ

(Comercial Article has been saved and vaits for approval.
Marketing
Culture [Portugués [v]
Article [zp oy
Referance

Organizagio Date |01-03-2007 .

Author |admin

Partal
- Image

Knowledge Base
[Title |PRIMAVERA BSS Lznga Versio 7

mCmmREEs Bz ul o

A w7 representa um investimento de 2,1 milhSes de euros em
desenvolvimento e incorpora conhecimento do mercado na versdo
mais abrangente de sempre do ERP PRIMAVERA.

|

Knowledge Base
Detail

Knowledge Base
Admi

Article

Done &3 Local intranet ® 100% -

PRIMAVERA WebCentral SDK Manual

> Navigate to the list of published articles, just to check that the new article is not visible yet -
it should not appear as Ana Casaco still needs to approve it.

» Now, log in as ana.casaco and navigate the items that need her approval. You should see at
least the article that we created before. Click on the Approve link to finally publish the

article.
) [= . X +: -
G_\;. - |g http:/fwstmschuetz/intranet?/PortalRender.aspx?PagelD =76 78255-4f8a-4923-a073-7cc 1e42efef1 M + | K ‘ HP |
P— - - >
w R [@Inhanat—mwered by PRIMAVERA Enterprise Partals] I 5 - B o= - |Zhpage - (G Tools -
PORGAL DO COLABORADGR > - F = v, | . Log-off =
s R =
A . . q N <4 —t "l
;H:Jms Desenvolvimento Comercial Marketing Administrativa Recursos Humanos Organizagdo Partais Knowledge Base 1 Margo 2007
Home \ Organizagdo \ Aprovagbes Pendentes
Aprovacgdes Pendentes
nvalvimento Categorias de Artigos (1)
B 'REF £1' - Admin (Pending)
Aprovar | Rejeitar | Ver Categorias
Humanos
Organizacio
Regras de Aprovacio
Aprovacdes
Pendentes .
! Consultade
! Aprovagies
Done &3 Local intranet ® 100% -

» If you now access the list of available KnowledgeBase Articles you should see the article that
we have created before.

Step 8 - Crystal Reports Integration

You’ll probably encounter situation where simple HTML output to the browser won’t be enough to
present dynamic, database driven content to the user. You might come to the point where you
need to create dynamic PDF files on the server and send the generated file to the client. The
salary receipt generation of the Human Resources Module of the WebCentral is a good example
of where this is already implemented.

In this chapter we’ll see how easy it is to generate dynamic PDF files using the WebCentral SDK.
We’ll add a new component to our already existing solution, which generates a PDF report with
all existing KnowledgeBase Articles. You can use the here presented code as base for you own
solution.

Step 8.1 - Creating a new component for reporting

Like already mentioned, we're going to demonstrate the dynamic PDF creation by implementing a
new component for the KnowledgeBase module. You already know the step’s to do so by
completing the previous chapter’s, so here’s a good chance to check your knowledge.

» Open the project Primavera.KnowledgeBase.Modules and edit the file
ComponentsIDs.vb

87

PRIMAVERA WebCentral SDK Manua

» Add a new shared read-only property named KnowledgeBaseReport, which returns a newly
defined Guid.
Public Shared ReadOnly Property KnowledgeBaseReport () As Guid
Get
Return New Guid("{4a89dled-17ec-416c-87d3-d3e97529229f}")
End Get

End Property

» Now that we’ve got the new components identifier, let’s publish the new component to the
WebCentral Platform and specify the component’s properties. Open the file Components.vb
and locate the method List. Add the following line the the already existing implementation.

ElseIf ComponentType = ComponentType.Publishing Then
objCol.Add (ComponentsIDs.KnowledgeBaseArticle, "Article Detail")
objCol.Add (ComponentsIDs.KnowledgeBaseArticlelList, "Article List")

objCol.Add (ComponentsIDs .KnowledgeBaseReport, "Article Report")

» Still in the file Components.vb, locate the method Edit and insert the section which will
return essential information about the new component.

ElseIf ComponentID.Equals (ComponentsIDs.KnowledgeBaseReport) Then

objComp.Name = "Article Report"
objComp.Description = "Component for creating article reports"
objComp.ComponentClass = "ArticleReport"

objComp.RequiresEnterprise = False
objComp.IconIndex = 0
objComp.BackgroundOpaque = True
objComp.AllowsFrame = True

objComp.ComponentSecurity = False

» We already have done everything to inform the WebCentral Platform about the new
component we're going to provide. All that is left is creating the component and the Crystal
Report file itself. To do that, open the project Primavera.KnowledgeBase.WebUI and
insert a new Web Usercontrol to the folder Components. You should already be able to
guess the components name from the previous step. Call it ArticleReport.ascx.

» Open the new components HTML view and insert the following two lines. These two lines will
define a message box component, which will be used as error message, just in case
something went wrong during the PDF report creation.

<%@ Register TagPrefix="WebC" TagName="WebGridMessage"
Src="../Primavera.Platform/WebGridMessage.ascx" %>
<WebC:webgridmessage id="messageBox" runat="server"

visible="False"></WebC:webgridmessage>

Now we come to the real interesting part — the code that actually will pick up an already existing
Crystal Report file and generate a PDF which is than sent to the client’s browser. You actually can
use this code as snippet and copy and paste it in your own project. You only should take care
about the database connection parameters, the report’s filename as well as the selection
formulas you need.

» Change the user controls base class to WebComponentBase.

88

PRIMAVERA WebCentral SDK Manual

Partial Public Class ArticleReport

Inherits Primavera.Platform.WebUI.WebComponentBase

> Open the new component’s code behind file and insert the following code.

'<summary>

' The following method is responsible for correctly creating the
' report in PDF format. The function will return the complete

' filename for the report on success.

'</summary>

Private Function PrintReport () As String

Dim reportArticles As Primavera.Platform.Services.Entities.CrystalReport =
New Primavera.Platform.Services.Entities.CrystalReport
Dim reportFileName As String =

Server.MapPath ("Modules/Primavera.KnowledgeBase/Report.rpt")

reportArticles.Location = reportFileName

reportArticles.Copies = 1

reportArticles.Destination =
Primavera.Platform.Services.Entities.ReportDestination.Preview

reportArticles.Format = Primavera.Platform.Services.Entities.ReportFormat.PDF

reportArticles.Title = "Knowledge Base Articles"
reportArticles.LogonInfo.Login = "sa"

reportArticles.LogonInfo.Password = "sasa"
reportArticles.LogonInfo.Server = "WSTMSCHUETZ\SQLEXPRESS"
reportArticles.LogonInfo.Database = "EPRIMAVERA"
reportArticles.SelectionFormula = "{KNB ArticleCultures.CultureID}=""{" _

+ WebContext.User.Culture.CultureID.ToString() + "}"""

Dim engineCtx As Platform.Engine.Entities.EngineContext =
Me.WebContext.User.EngineContext
Dim serviceProxy As Primavera.Platform.Services.Business.CrystalReports = _
New Primavera.Platform.Services.Business.CrystalReports
Dim resultFilename As String = _
serviceProxy.ExportReport (engineCtx, reportArticles, Guid.NewGuid.GetHashCode ())
If resultFilename Is Nothing Then
messageBox.Visible = True
messageBox.MessageType = Platform.WebUI.Controls.WebGridMessageType.Error
messageBox.MessageTitle = "Primavera.KnowledgeBaseArticleReport"
messageBox.MessageText =

String.Format ("An unexpected error occurred while creating the requested report ({0})",

reportArticles.Location)
messageBox.Refresh ()
Return String.Empty
End If

89

PRIMAVERA WebCentral SDK Manua

Return Me.WebContext.Portal.PortalUrl + "/" + resultFilename

End Function 'PrintReport

» Please make sure that you substitute the parameters like the SQL logon info with the correct
values. It surely is good practise to place these configuration settings into secure and easy
maintainable configuration files, like for example the web.config file. You can find valuable
information about this in the Microsoft Developer Network.

» As you can see, this method will return the absolute URL path of the generated PDF report.
All we need to do now is call this method in the Page_Load handler, and redirect the HTTP
response to the file generated. Locate the Page_Load method and insert the following lines
of code:

Protected Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

Dim reportFilename As String = PrintReport ()

If Not reportFilename.Equals (String.Empty) Then
Response.Redirect (reportFilename)
Response.End ()

End If

End Sub

We’'ve now added a new component to our module, which dynamically creates a PDF report
having all our KnowledgeBase articles in the currently active culture, and sents this report to the
client’s browser. Your code now should be compilable and you should be able to deploy the
module to the WebCentral Platform.

What we still need to do, is create the Crystal Report Template file and store it at the place
where the code expects it to be (C:\inetpub\wwwroot\WebCentral\Modules\Knowledge
Base\Report.rpt). We'll discuss this in the next step.

Step 8.2 - Creating the Crystal Report document

The WebCentral Platform uses componens from Crystal Reports 2008 to dynamically create PDF
reports. For that reason, the Crystal Reports 2008 designer should be your tool of choice to
create the report template files. However, you can use any other version, as long as the created
file is compatible with the expected format.

To create the report template file, open the designer and connect to the database that is used by
the PRIMAVERA WebCentral Platform. You can use the OLE DB (ADOQO) connection provider for
SQL Server to create a new database connection. Select the tables KNB_ArticleCultures and
KNB_Articles for being used in the report.

90

PRIMAVERA WebCentral SDK Manual

Browse the data source for the tables you want to add.

{Mote: to edit the alias for a table, select the table in the "Selected Tables' tree and click on it or
press the F2 key)

Awailzble Data Sources: Selected Tables:

Diatabase Files = ---.ﬁ WSTMSCHUETZ\SQLEXPR|
Exchange 5.5 Message ; KME_AdicleCuttures
Exchange Message Tra KME_Adicles

Bl []]

Public Folder ACL
Public Folder Admin
Public Folder Replica
XML

More Data Sources

AT] 1 |

wmw@

In the reports design mode, drag and drop fields Title, Author, Summary and Body to the detail
section of the report. Check the preview pane for how the compiled will look like.

B Crystal Reports - [report.rpt]

[e Edt vew Inset Fomat Detebase Repert Window Hele
De-HagREa& BT o - o EEEUE M 0% -2
g oA m o U EEEELA B SR8 RO

‘A EEHBesSE@B® WE 8K Ao E DeE g 00 0 OO

StartPage report.rpt x | 4 b | Waorkbench 3x
Design [Preview | B3Il Yo "Ed <o
R R R R T R R R RN O PR - S R R SRR L L LN EANREER [<Creste a new project>
Report Header

- :Knowledge Base Report

Artice Title | Fitle

B Buthor | Author
~ Summary | Summary
- Atice . Body
-
=
- .

Report Focter

Page Footer

Field Explorer 2 x
TR N X
(- Database Fields
£--X%1 Formula Fields
SQL Expression Fields

Running Total Fields
-2 Group Name Fields
% Spedal Fields

ESIField Explorer |) Report Explorer |
Recorde: 2 Il Il |

For Help, press F1

91

PRIMAVERA WebCentral SDK Manual

If you have completed design, store the file to the directorty where the component expects it to
be. In our example, it expects it to be in the folder

C:\inetpub\wwwroot\WebCentral\Modules\Knowledge Base\

and its name should be report.rpt.

Step 8.3 - Testing the Reporting component

> If you haven't already done it, use the Visual Studio 2008 IDE to compile the solution in
DEBUG mode.

» Close the Visual Studio 2008 IDE and deploy the solution using the eModuleDeploy utility.

» Use the Site Administrator utility to create a new page Article Report in the portal that you
previously used to test the KnowledgeBase module.

» Place the new Article Report in this new page.

» Check-in the changes and publish the portal.

» Navigate to the page that contains the Article Report component. The component should
create the dynamic PDF document and render it to your browser.

6\; |] et justmschuetz intranet7Reports Report-Dee5s 17c-<6 7540 La-0836-2 380 570055, pf RIEE [[2]-
N — - - »
T e [@hﬂn:va\'s(msx:huEtzﬂnﬁanEUfREpur(szEpurH]EESB‘.. I I Y- B o= - [2hPage - {GF Tools -
A { = 5 > 1 "=
Blsvescoy = @ @[|Tnsoect i || - 2] [Fo] © [1e% |- ® | B2 o ¥1 | Adobe Reader 2.5
| A »
“ -~
o uad
=)
&
Knowledge Base Report
Avrticle Title Integracio
Author Laura Jones 3
Summary Discutindo a integragdo ...
Article Este assunto & susceptivel de levantar alguma polemica. Apesar de existir bastante documentagdo sobre este
tema
Article Title Desenvolvendo um Médulo
‘ Author Jim Button
Summary Este artigo descreve.
Article Para desenvolver um Madulo ePrimavera & imprescindivel comecar por uma leitura adequada...
2
£
£
G
g
2
£
£
£
5
o
v}
= 4 [o M|lo ©
Done: ‘ﬂ Unknown Zone

92

PRIMAVERA WebCentral SDK Manual

PRIMAVERA ERP Integration

The development of models that integrate the PRIMAVERA ERP is just like developing any other
type of module. However you will need to take at least two aspects in consideration.

The access to the PRIMAVERA ERP database

You never should take for granted that the PRIMAVERA ERP database lives on the same database
server than the database for PRIMAVERA WebCentral. The PRIMAVERA ERP database location is
defined while initializing the PRIMAVERA ERP instance using the PRIMAVERA ERP Administration
tool. The PRIMAVERA WebCentral module should always use PRIMAVERA ERP platform engine to
initialize the session and open the required enterprise database.

Usage of ERP Web Business Services to access PRIMAVERA ERP engine

Since v8.0 SR1 WebCentral, a new way to communicate with PRIMAVERA ERP is available. This is
and will be the preferred method from this version on. It is based on web services, which are
created after running the Erp Web Business Services setup available on the WebCentral DVD.

This new layer allows for 64-bit project configurations/compilations and greater compatibility
between ERP versions and WebCentral as the Webservices are created at runtime using current
interops working on the machine. This new method removes most likely conflicts between the
WebCentral components and the existing ERP version.

Depeding on the estimated workload, network configuration and final client dimension it is
possible to configure one machine for the ERP Web Services and another for Webcentral or use
the same machine for both tasks, this allows for a flexible system configuration and a better
resource management according to client needs.

It is also quite easier to develop components which use ERP data, than in previous
WebCentral/Enterprise Portals versions.

Please note that this is available from ERP version 7.55 SR2 or newer.

Overview

The PRIMAVERA WebCentral Platform provides one module which will support you while
developing customized modules that integrate the PRIMAVERA ERP.

First off, if there are any existing references to Interops in your solution they must be removed.
Next, add four new references to your project, they are: “Primavera.ERPOnline.Bso.Proxy.dll”
and “Primavera.ERPOnline.Services.Proxy.dll”.These dll’s can be found after installing the Erp
Web Business Services under its “\ProxyClient” folder (ex:
“C:\inetpub\wwwroot\ERPWebBusinessServices\ProxyClient”). The remaing two references are
“Primavera.ERP.Entities” and “Primavera.ERP.Business”, both can be found in the WebCentral
SDK Folder.

Creating a new Web component for ERP Data
Access

Again we can use what we have already learned and create a new component for showing ERP
Data. This time we are going to use the base solution provided by Application Builder.

» Create a new Solution in the Application builder
> Edit the created solution and publish the “programming logic”

93

PRIMAVERA WebCentral SDK Manual

» Open the generated solution in Visual Studio.

We are now going to create a new component named ERPSDK. After opening the solution follow
these steps.

> Open the project Entities in the solution and edit the file StaticIDsBase.vb

» Add a new value to the ComponentsEnum Enum.

Public Enum ComponentsEnum
BizEntityViewer
BizModelExplorer
TreeModelExplorer
ERPSDK

End Enum

» In the same file find property named components and add a new item with a new guid.
Public Shared ReadOnly Property Components (ByVal Item As ComponentsEnum) As Guid
Get
Select Case Item
Case ComponentsEnum.BizEntityViewer
Return New Guid("{A7A37221-447E-4654-89B0-E79F2E31F182}")
Case ComponentsEnum.BizModelExplorer
Return New Guid("{A7A37221-447E-4654-89B0-E79F2E31F183}")
Case ComponentsEnum.TreeModelExplorer
Return New Guid("{A7A37221-447E-4654-89B0-E79F2E31F184}")
Case ComponentsEnum.ERPSDK
Return New Guid("{A7A37221-447E-4654-89B0-E79F2E31F185}")
End Select
End Get

End Property

» Now that we’ve got the new components identifier, let’s publish the nhew component to the
WebCentral Platform and specify the component’s properties. Open the file Components.vb
under the Modules project and locate the method List. Add the following line the the already
existing implementation.

ElseIf ComponentType = ComponentType.Publishing Then
Components.Add (Entities.Proxy.StaticIDs.Components (Entities.StaticIDs.ComponentsEn
um.BizEntityViewer), ResMan.GetString("RES Components BizEntityViewer"))
Components.Add (Entities.Proxy.StaticIDs.Components (Entities.StaticIDs.ComponentsEn
um.BizModelExplorer), ResMan.GetString("RES Components BizModelExplorer"))
Components.Add (Entities.Proxy.StaticIDs.Components (Entities.StaticIDs.ComponentsEn
um.TreeModelExplorer), ResMan.GetString("RES_ Components TreeModelExplorer"))
Components.Add (Entities.Proxy.StaticIDs.Components (Entities.StaticIDs.ComponentsEn

um.ERPSDK) , "ERPSDK Component'")

> Still in the file Components.vb, locate the method Edit and insert the section which will
return essential information about the new component.

ElseIf ComponentID.Equals (ComponentsIDs.KnowledgeBaseReport) Then
objComp.Name = "ERPSDK Comp"

objComp.Description = "ERPSDK Component"

94

PRIMAVERA WebCentral SDK Manual

objComp.ComponentClass = "ERPSDKComponent"

objComp.RequiresEnterprise = True 'This options trigger the show of the
combobox which allows for Enterprise Selection

objComp.IconIndex = 0

objComp.BackgroundOpaque = True

objComp.AllowsFrame = True

objComp.ComponentSecurity = False

> Now all that is left is creating the component file itself. To do that, open the WebUI project
and insert a new Web Usercontrol to the folder Components. Call it
ERPSDKComponent.ascx. The component class must match the ComponentClass property
inserted in the previous step. It is case sensitive.

» Open the new components HTML view and insert the following two lines. These two lines will
define a message box component, which will be used as error message, just in case
something went wrong during the PDF report creation.

<%@ Register TagPrefix="WebC" TagName="WebGridMessage"
Src="../Primavera.Platform/WebGridMessage.ascx" %>
<WebC:webgridmessage id="messageBox" runat="server"
visible="False"></WebC:webgridmessage>

<asp:Label ID="Labell" runat="server" Text="Label"></asp:Label>

<asp:GridView ID="GridViewl" runat="server"></asp:GridView>

Now let’s place some data in the inserted controls.

» Change the user controls base class to WebComponentBase.

Partial Public Class ArticleReport

Inherits Primavera.Platform.WebUI.WebComponentBase

» The following code segment shows how to invoke the PRIMAVERA ERP engine and bind the
list of available items for the selected enterprise to a data grid control as well as to show the
current user name for employee with code "FO01".

Protected Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Dim erpContext As Primavera.ERP.Entities.ERPContext = Nothing
Dim func As Primavera.ERPOnline.Bso.RhpBEFuncionario = Nothing

Dim contactos As Primavera.ERPOnline.Bso.GcpBEContactos = Nothing

Try

erpContext =
Primavera.ERP.Business.Proxy.OpenEnterprise (WebContext.Instance.Parameters.ERPPlatformVv
ersion, WebContext.User.EngineContext.EnterpriseCode, WebContext.User.ERPAccountUser,
WebContext .User.ERPAccountPassword, WebContext.Instance.Parameters.ERPInstance)

func = erpContext.BSO.RecursosHumanos.Funcionarios.Edita ("FOO1"™)
Labell.Text = func.Nome

artigos = erpContext.BSO.Comercial.Artigos.LstArtigos

Gridviewl.DataSource = artigos.DataSource.Tables

Gridviewl.AutoGenerateColumns = True

95

PRIMAVERA WebCentral SDK Manua

Gridviewl.DataBind ()
Catch ex As Exception
messageBox.Visible = True
messageBox.MessageType =
Primavera.Platform.WebUI.Controls.WebGridMessageType.Error
messageBox.MessageTitle = "Error"
messageBox.MessageText = "An error occurred: " + ex.Message + vbNewLine +
ex.StackTrace
messageBox.Refresh ()
Finally
func = Nothing
contactos = Nothing
Primavera.ERP.Business.Proxy.CloseEnterprise (erpContext)
End Try
End Sub

Please note the following: a good practice it is importante to guarantee when the closeEnterprise
Method is called. Not doing so may lead to deadlocks and/or memory leaks.

Windows Components

Since all visualization components should always be written in web based components, probably
you will never need to invoke the PRIMAVERA ERP engine in Windows Forms based components.
From version 7 on, Windows Forms based dialogs are only used to configure components in the
Site Administration utility. However you might need to access the PRIMAVERA ERP engine from a
Windows Forms based component. Here’s how it’s done, presuming that you already
implemented the remoting layer.

1. Create a Proxy from the Remoting assembly, using the form’s member CreateRemoteProxy.
2. Obtain an ERPContext, if not already obtained, using the proxy’s OpenEnterprise method.
3. Call the appropriate methods you need.

4. Release the ERPContext calling the proxy’s CloseEnterprise method.

96

PRIMAVERA WebCentral SDK Manual

Frequently Asked Questions

What does the deployment process do?

The PRIMAVERA WebCentral SDK provides a utility that hides the process of deploying a
customized module from you. However, you might need to deploy your module by hand, that is,
for example, if you are not developing at the production server - there will come the time you’ll
need to deploy your module to the l/ive server, which normally is not possible using the
eModuleDeploy application.

So what does this small tool does? What should you do to deploy your module by hand?

1) Prepare your module files to be deployed
Compile your module in RELEASE mode. Create a new folder on your local or pen drive and
copy all files that need to be deployed to this folder. At least you should copy all assemblies,
web pages and web user controls (*.dll, *.ascx, *.aspx) to this folder. Depending on your
code, you also might need other files.

2) Stop the Internet Information Services
To avoid that files get locked due to ongoing processes, avoid that requests to the web
server are made - stop the Website in the Internet Information Services Administration
Console.

3) Copy all assemblies to the WebCentral Installation Directory
Copy all files that you prepared to the installation directory. This directory depends on the
name of your solution, for example, you need to copy these files to the directory

C:\inetpub\wwwroot\WebCentral\Modules\Primavera.KnowledgeBase\

if your solution’s is name is Primavera.KnowledgeBase.

4) Copy the WebUI assembly to the bin folder
All of the system’s module’s WebUI assemblies need to be located in the \bin folder below
the WebCentral’s installation directory. Move the WebUI assembly from your modules folder
to the bin directory.

5) Register the assemblies in the WebCentral Database
Use the tool eModulesUpdate, located in the \Tools directory, to update the register of
components in the WebCentral Database. This step always should be done, but explicitly
needs to be done whenever the version of a module changes.

6) Start the Internet Information Services
At last, do not forget to start the website again.

How can I debug my module?

Debugging is a normal process during development and helps to find problems you never might
find without. Customized modules are no single web —or windows application that you could
debug easily, so you should ask, how can I debug my module?

The answer is: Depends. It depends on what kind of code you are interested. Code that is
executed on the client, or code that is executed on the server? Remember, all Windows Forms
dialogs are executed in the client’s machine!

97

PRIMAVERA WebCentral SDK Manual

Most of the time you might need to debug ASP.NET code in your WebUI, Business or Data layer.
Just make sure that you compiled and deployed your module in DEBUG mode. Than, before you
access any of you components, use the Visual Studio IDE to attach the debugger to the aspnet
process.

#% Primavera.KnowledgeBase - M Ot Visual Studio

Fie Edit View Project Buld Debug Data Tools Test Window Community Help

B9 S iE- @ ¥ 50| B Orsoeen |FhAtec oProcess... | = 2 9 - 9 53 [F o= |G S R B D

] Yoo s

% Artidelist.asocvh | Components.vb | ArtideAdminDetsilascx | Artides.wb - ArticleAdminDetail.asocvb® | Start Page R] Solution Explorer - Primavera.KnowledgeBase.Remo... ~ L X

< ¥ ArticleAdminDetail][(Dectarations) v Eliel o,

g ' [Solution Primavera.KnawledgeBase (8 projects)
Frimavers KnowledgeBase. Susiness

+ End Sub 'WebCategoryPopUpButtonl CategorySelected

P Data
Primavera KnowledgeBase Entities
Primavers KnowledgeBase. Remotng
Primavera KnowledgeBase. Modules

3 Primavers KnoviedgeBase Remoting

(5 Primavera KnowledgeBase. WebLI

[

Private Sub btnPublish Click(ByVal sender As Object, Byval e As System.EventArgs) Handles btnPublish.Clickl

Attach to Process

Dim businessObject
If Me.BusinessEntj

Transport: t- [=d| My Project

businessObject E [pefaut ¥ 3. i@ References
Qualfier: [wsTMscruETz [v][Lgrause. | [it

= 5 Components

Transpart Information
The defauit transport lets you select processes on this CompUter or & remote CampUter rurning the Mcrosoft Visual Studio Remate
Debugging Monitor (MSVSMON.EXE).

Article. ascx
[B] ArtideAdmin.ascx
- [B7] ArtideAdminDetal. asex
% ArticleAdminDetai.asox. designer vb
Attach to: Managed code, Native code ‘ [sgect. | 9 ArticeAdminDetai.ascx.vb

{88 3

- [Artidelist.zscx
#yaileble Frocesses L £ ob
Process D Title Type User Name Session |4 - O3 Utiities
lg.exe 5080 X85 LOCAL SERVICE 0 = 1] AssemblyInfa.vb
{zspnet uip.exe 1800 TS0, Ma... SYSTEM i} [Web.config
Crypserv.exe 1808 85 SYSTEM 0 3 Primavers KnowledgeBase. WinUI
i ezl 29 it 1004 e SYSTEM o = ¢
Dim returnMes: ctfmon. exe 2332 X85 PRIMAVERAMek... 0O
Dim result As dinost.exe 5116 xB86 SYSTEM 0
If locked Ther ehoduleDeploy.exe 5935 eMadulDeploy (Enterprise Portals SDK) Managed, ... FRIMAVERAMek.. 0
™= | explorer.exe 320 Formacao SDK xB86 PRIMAVERAWeik... 0
= FucAgent.exe 1872 86 SYSTEM 0
Fuchgmt.exe 2612 xB86 PRIMAVERAWeik... 0
hh.exe 2984 ePrimavera SDK - Docmentagio Geral Script, X386 PRIMAVERAMek.. 0
hkemd.exe 88 xB86 PRIMAVERAWeik... 0 v

Show processes from all users Show processes in all sessions

Properties ~ L X
Catch ex As Exceprion ArticleAdminDetail Atrbutes -
Me. ShowMessage (NebGridMessageType .Error, String.Empty, ex.Message) E (1M
COM Class Felse [a]
Sac 2=y oM visble True B
COM Class
LEnd Class 'ArticleRdminDetail [se]|| Expose Class to cOM.
(= u =
[Error List| 5] Find Results 1
Ready Ln 568 ol 1 chi NS

If you need to debug client code, such as in Windows Forms Dialogs (properybag editors), you
simply the Visual Studio Debugger to the host, which normally is the Site Administration
application or the currently used browser (Internet Explorer).

Once you have attached the Visual Studio Debugger to the right process, all debugging
functionality like breakpoints, watch and immediate window are available.

How do I change the portal’'s template?

PRIMAVERA WebCentral provides you with a feature to change the visual experience using web
templates. A web template is a set of Cascading Style Sheets (CSS) and images stored in the
WebTemplates folder of the PRIMAVERA WebCentral installation directory. The standard setup
already comes along with some web templates, which you can use for your portals. To change
the web template used by a portal, simply launch the Site Administration utility and open the
Portal Designer for the respective portal. Open up the portals properties and you will be able to
choose one of the existing templates for your portal:

98

PRIMAVERA WebCentral SDK Manual

& Propriedades do Portal

i Geral

| Menu Lateral || Cabecalho & Rodape || Revizfies

Template
Template: | Primavera M
Fonte: | Verdana M

Péginas espediais
Para portais autenticados, pode indicar uma pégina de login desenhada por si.

Pagina de Login: |Login | E]

Hemepage: |Pégina Pessoal | E]

Manter a sessdo activa

[Confirmar J [Cancelar] [Ajuda]

The portal will appear with a new look after checking and publishing in the modified portals
properties.

How do I create a new layout template?

If you feel comfortable with CSS there’s nothing that could keep you from customizing one of the
available web templates to your own needs. Just take one of the existing templates, copy it to a
new web template directory and start modifying the CSS as you wish. The following chapter
explains the various styles and where they are used.

Portal Header

The portal header is made of four tables, each one having a different style. These four tables
separate different kind of information and make it possible to adjust the visual representation:

> Top (name of the portal and login)

» Corporate Identity Banner

» Navigation (drop-down menu, date and culture)
» Breadcrumb (Navigation Path)

The corporate identity banner can be chosen by the site administrator during the portal’s design
process, so there’s no need for a manual intervention in the CSS file for changing the banner.
However the banner should not exceed a maximum height of 80 pixels.

Site piblico da empress | Mome de quam 25%3 login = | Login | Log-off

Qe @
da ilmprcsa

Banu 01 Manu #02 Many #03 Meanu #id Menu #05 Janeas M, 2003 Englis

hometopcio mplbasbopsie 20z
~

UK.gif

ccelMavD

99

PRIMAVERA WebCentral SDK Manual

Portal Footer

The portal footer is made of two tables, where the upper one inherits the style from the portals
header and the bottom table is made up of following styles:

JinkTepe

Text

To distinguish between various types of information, and their respective importance to the user,
several styles have been defined for being used:

> Title
> Subtitle
> Headline Title

> Normal text

Isto é um titulo

& Linha Profissional PRIMAYERA & uma Soluclo de Gestdo
tecnoldgicas e funcionalidades, o que faz destes produtos

Isto @ um sub-titula
Nova ersso 5.0

A PRIMAYERA tem vindo a ajustar da melhor forma os pro
responder s dificuldades senfidag por cada uma delas, be

link no roeia do texte particulares a0 rivel da robustez ¢ 5
5.0 da Linha Profissianal, suportada em bases de dados Mi
aarantia de robustez, sequranca ¢ fiskilidade,

Mowvidades da Linha Prafissiona

Qutro Lindk com D

1ha Empresaria

Mova ¥ersdon 5.0

A PRIMAVERA tem vinda a ajustar da melhor forma o5 pre
respander & dificuldades sentidas por cada uma delas, be
link na reeia do texte particulares ao nivel da robustez & 5
5.0 da Linha Profissianal, suportada em bases de dados Mi
gerartia de robustez, sequrangs = fiabilidade .

Links

There exist four styles for styling hyperlinks:
> .linkTopo, mainly used for the portal header)
linkMenu, mainly used for the portals menu

JdinkTxt, mainly used in other text and in headline section

vV V V¥V

dinkDest, mainly used in lists with headlines

100

PRIMAVERA WebCentral SDK Manual

Separators

One way to group and prioritize information is to encapsulate it into a separator. One table, with
three columns are needed to build this feature.

.ce|SepHCorComplE

.celSepHCorCom plC celSepHCorComplD

Mova Yersio 5.0

A PRIMAVERA temn vindo & ajustar da melhor farma os produtos 4 medida das PME,
procurando respander 42 dificuldedes sentidas por cada wna deles, bem came das suas
recassidades o & um Lok no meis do beate perticularas ao nival da robustaz & seguranga.
Meste sentide, surge a versie 5.0 da Lnha Profissionsl, suportads em bases de dados
Micrasalt SOL Server, o que se traduz numa garantie de robustez, sequranca e fhabilidade.

+ 4
.celSepHGrE . celSepHCorC

. celSepHCorD

Headline sections

A headline sections are composed of 3 tables (title, information and bottom).

A mais recente tecnologia. ..

Qs produtes da Linha Prefissional foram dasenvolvides com base na mals recante
arquitectura da desenvolvimento, Respondendo s exigéncias das dltimas tecnologizs, tim
carni objective final a satisfagdo das necessidades de cada utilizador, apresentando
pradutos caracterizades pela facilidade ¢ rapides de implernentagio e de costumizagia.

==

The rule that defines how the various parts fit together is the selected colour. This way, the
colour chosen for the headline section also defines the colour for the horizontal and vertical
separation lines, the arrow indicator for the links as well as for the buttons, if this applies.

PRIMAVERA WebCentral already comes along with a great variety of headline section styles,
which also allow to be combined, and therefore provide a wide range of possibilities.

@ All three tables used to create a highlight box do have three columns. Each of these three

columns has style identifier associated, which starts with .cel and ends with a key for which

column the style applied (E=left, C=center, D=right) - example .celDest04C is a style used for
the center column of highlight box style 04.

101

PRIMAVERA WebCentral SDK Manual

nome da tabela

A mais recents tecnologis, .
s pradutos da Linha Profissional foram desenvalvidos com base na mais recente
arquitectura de desenvalviments. Respondendo &5 exigéncias das dltimas teonologias, tEm

como abjectiva final & satisfagBo das necessidades de cada utilizador, apresentando
pradutas caracterizados pela facilidade © repides de implementagdo e de costumizagia.

nome da tabels

» primeirg item de uma lista
+ B3 produtas da Linha Profissianal
+ primeira tern de uma lista
+ D= produtas da Linha Prafissional

nome da tabela

A mais recents tecnologia. .

02 produtas da Linhe Profissional foram desenvalvides com base ne mais recents srquitecturs de
desenvalviments. Respondends 43 exignsas das Gltimas teenclogias, tm coma obiectiva final &
sabisfagio des nacessidades de cada vbhzedor, apresantanda proditos caracterizados pela
faclidade e rapidez de implernentactio & de costumizagio.

nare da tabel a

A mais recente tecnologi

O produtas da Linha Profissional foram desenvalvidas comm basa na mais recenle arguitscturs de
desanvolviments. Respondends 45 exiglnsias das dltimas tecnologas, tm come abjective final &
satisfacio das necessndades de cada vhhzedor, aprasantands produtos caracterizadas pela
facilidade & rapidaz de implementacio & de costemizacio.

nome da tabela

L

A mais recente teonclogia. ..
Og produtos da Linha Profissional foram dessnvolvides com base na mais racante
arguitectura de desenvolviments. Respondends &5 exigéncas das dlimas tecnologias, bm

coma objactiva final & satisfacho das necessidades de cade utilizadar, spresentands
arodutas caracterizados pele facilidade e rapidez de implementacde = de costumizagia.

o da tabela

£ mais recente tecnologia.. .

OF produtos da Linha Profissional faram desenvalvidos com base na mais recents
arguitectura de desenvolvimerto. Respondenda ds exigéncias das Glimas tecnalagias, t8m
comno objective final 2 satisfacio das necessidades de cads utilizador, apresentando
arodutos caracterizados pela facilidade = rapides de implemantacdo & de castumizagdc.

. el Dest080n

baxes05TiE nome da tabela

A mais recente tecnalagia...

04 produtes da Linha Profissionel foram desenvolvidos com base ne mals recente rquitectura de

none da tabela

A mais recente tecnalegia..

@5 produtos da Linha Profissional foram desenvolvidos com base na mais recente arquitectura de

102

PRIMAVERA WebCentral SDK Manual

ba01Tit (Titalo da caina]

Este: & o texta desta caiza &
serve para demanstrar o uso
de caizas para colocacio de
destaques ou coisas do
aénero,

i =
Listagem de
links
Iata & ur ok
to & outra link
sto & ainda mais um link
sta & umn link
sta & outra link
Isto & ainda mais um link
Ista i link:
Isto & outra link
510 & ainda mais um link

meiz um
540 & misis um
5to & miais urn lin
st0 & miais um lin
%0 B Mais um
E ainda mais um...

Titulo da caixa
em duas linhas

Este € o texto desta caixa e
serve para demanstrar a uso
de caixas pars colocagio de
destagues ou coisas do
adnera.

a

. celDest07E .celDes07C . celDrest07 D

Titulo da caixa
em duas linhas

Este & o texto desta cals &
serve para demanstrar o use

da calxas para colocagio de
destagues ou coisas do
genero.
@ lerarbas
r
= =
Listagem de links

Lsko & gy link
Isto & outro link

Listagem de links

[sto & autra link

103

PRIMAVERA WebCentral SDK Manual

Search Sections

The following model will illustrate the use of styles in the search section.

boDe=t02Tit [Pesquisa Ripida

Fesquisar por: R .inputCorCompl

Pesquisar Termnétics

m:

Pesquiza por outra apgas

—
]

Headlines

The following model will illustrate the use of styles in the headlines section.

el .inputCorCompl

b QA Tit Press Release |
- - ~ - ~ -
_,-JIIJJD mals ou menos A mais recents A MEis recents
comprido tecnologia... tecnologia,.
| St da press-releass 24-10-2002 a 31-12-200 24-10-2002 a 31-12-200:
@5 produtas da Linha
Profissional foram
deservalvides com base na
mais recente arquitectura de
dasanvolvimanto.
Respondendo ds exigéncias
- ©5 produtes da Linha Os produtos da Linha das ditimas tecnologias, Wm
- Prafissional forarm Profissional faram zoma objective final &
desenvalvidos carmn base na desenvalvidos com base na satisfagdo das necessidades
rrals Fecorte arquitectura de mais FECENts arquitectusa del da cada utilizadar,
desenvalvimento, desenvolvimento, apresentando produts
Respondendo 45 exigéncias Respondendo &s exigéneias, caracterizados pela fachdade
das (imas tecnologias, tém das dltiras tecnologias, & rapdaz,
corno objectivo final 2 2 objectiva final 4 @ |er artino
zatlsf;;éo g‘illas é‘necessmades idades
oCor aif e cada utilizader, i
goCor.gif M . !
| — caractenzadds pela fachdad,
e = & rapidaz.
ALLa L
e lp. @ Jerertioe e

s 3
[cenaics: (N .

Portal Login

The login interface is composed of four tables located in a <DIV> element at the right corner 24
pixel below the top. The first three tables are attributed to the boxLogin style where as the
bottom table is divided into two columns. The left column contains a rounded corner (loginE.gif)
and the right column is attributed to the celFundoLogin style.

1 Nome d= quem estd login = | Lagin @ | Log-off

Pagsward
Jinputlogin

Lataslogin Esquecen a Fascword @

[ry
mh

104

PRIMAVERA WebCentral SDK Manual

Portal Login Page

The following model will illustrate the use of styles in the login page.

Uttilizador Passward

= r——

[inputCor
Portal E

.botacCor

Esquecsyw a password? Cligus quit

=)

The following image illustrates the styles used in a login page showing a warning.

Lagin |
A sua password expirou. Queira por favor definic uma nova password para
vA ter acessn a este servigo.
o
utilizadar Mova Passward
axr|arracan. gif | 1 |]
Partzl Cenfirmar Password

Link List

The following image illustrates the usage of styles in the link list component. The style used can
be modified in the components properties.

boed L CatgGorCompl (Sites de Interesse 1 [Sites do G rupo -boed | CatgGor

v Link #01 - Link #01
+ Link #02 + Link #0z
+ Link #03 » Link #03
+ Link #04
+ Link #05

bosDest03TE

o . Y Sites Internos
. boxDest02Tit Sites de Interesse
Link #01 tink #01
) Link #02
-a | Link #02

Lirk #03

7y ' L)

105

PRIMAVERA WebCentral SDK Manual

Menu

The PRIMAVERA WebCentral Platform provides two types of menu visualization’s. The flat menu

style and the rounded menu style - the portals menu style can be selected in the portals

properties dialog. The following two images illustrate the usage of styles in the two menu types.

Flat Menu Style

sub-opgio #01

subrapelio #02
Drados Pessoais
Vencimentos

Horas Bxtras

fechal1.gif / fechallHowver. gif

boedMienu0l OpOff

Drados Pessoais
Ventimentos
Horas Extras

Férias
Férias
beedvienuD1 CatgOn sub-apgdn #03
beedvienuD1 CatgOn sub-apio #04

boedMienu01 CatgOn

Rounded Menu Style

bosdMenuD2Catg0 10Ff [Sub-ap #01

. bredMienuD2Catg On Subeop #0Z -

Dadas Pessodis

Vencimentos

boedMenu020p Horas Extras

Férias
Cados Pessoais

wencimentos

badenul2SubOp

Haras Extras

Faltas
| Férias
peMenu 02CatgOf Subeop #03
jaru02CatgOf Sub-op 204
L J

=

boedvienuld CpOff

<oel Manul2S ubOpOff

106

PRIMAVERA WebCentral SDK Manual

Content Lists

The following image will illustrate the usage of styles in the content list controls.

§ 24-10-2002 & 21-02-2003 "

Mame do evento

Lot

Py e, .,

@l 24-10-200% a 21-02-2003
Marme do evento

B @ Consuitar snvents

131 Registes, Ccorrénsias de 1a10 [4 1ol ooz os) Bl B
-

[rimerost gl

Content Options

The following image will illustrate the styles used in the content options pane.

2 tmgririr [+ Recomendar 3 Amigo
»

email.gif

Content Headlines

Placed in one of the portal’s side columns, this type of component can suggest the user
important headlines without the need to use search. The following image explains the style usage
of this component.

srnaan
Outro Press Release

Eshe é o bexcta desm
serve para demonstrar o use

de caizas pars colecacde de

destagues ou coisas do

qénera.

@ ler artign

26.01.2002
Titulo

107

PRIMAVERA WebCentral SDK Manual

Forms

The following image illustrates the usage of styles in the form’s component:

Harne

Morada

Localidads
m Cédigo Postal

Hacianalidade

Hatiiralidade

Lacal de smissdo da
B.I

.

ANLomo Fonseca

Lugar da Gantipo, Durne
Braga

4700-064 | | BRAGA
Fostuguesa

& Wnfn da Saiibi

Brags

m Dados Fiscais

N2 de contribisnts

Tabala da fO@

N.2 Sindicato

N2 C.GA,

Z1E694506

BiTn e e

123354709
1233557

Actualizar Dados

Grids

|

The following two images illustrate the usage of styles in the grid views.

m]

- |
.cellistParam

- . . Cidigo: Nome: /
Funcionario qu | |

Datas Dats ineciglh [2001.02.05 =] Dats final: [2001.02.05 =]

[~ Resultados Por meses ' Por funcondnios €& For departaments (@

a B

Tipo Procassaments

200 iy T T
2002-02-28 Vencimento B240,64 HED Pago
200g-03-31 UTncimcntn az40,64 Mo Pago
20-05-31 udncimento aeded M Pago
2002-D6-30 Vencimenta ardn,64 Mo Pago
2002-07-31 Vencimenta B240,64 HEp Pago
2002-08-31 Vencimento 240,64 MEo Pago
2002-09-30 Yencimento 9184,14 HEp Pago |
2002-10-31 Vencimenta F2410,64 HEe Paga m
2002-11-30 Vencimento 240,64 Mo Py
2002-12-21 Vencimenta smM }
Tutal (Eures) | 20464
bl istBotac fterm Anterior | [Ttsm Seguinte | [mtn |oFrocessar | [Lgchuabzar

— ..o |

N

108

PRIMAVERA WebCentral SDK Manual

m—b Listagem com detalhe & mais informacéa fechada

Sections

The following two images illustrate the usage of styles in the information sections.

Processar Paricdo

Mis

[vencmento =] [Mensal

= [

| Jor =

\a Proc. Dhata Froc,

2001.02.05 -I

JcallistCataB

.celListCatg

IbermcAnterior | | Item Seguinte

Doata Tipa Progassamenta Tatal Liqu+do Estada =
20UEIT-9T TR AT &0 PE00
280z-02-28 vendimento BE40,E4 Wdo Pago
2 T + i Hixs TP
2;‘02-04-30 WenMments B0, 64 NEo Pago

820464,64

Artys -;

cellistData
cellistDatal

Listager com detalhe & mais informacds Aberta

Processar Periads

HEs

|venamente =] |Menzal

= e

Dia Proe. Diaba Proc,

2001.02.0% 'I

Esbe é o texta dests cana &

serve para demonstrar o uso
de caixas para colocagio de

deskagues au coisas do

Atengbol

Itern A ntarior [terg Seguinte

| Paaguidar
Data Tipa Pragzssamenta Tatal Liql.*dn !shdn/

2(TZ0T-3T TEnCTee Dot TIEG Peac

=] 2002-02-25 Wencimanto A, G MEo Fagoe
2002-03-31 WEnCimants NEo Pago
2foz-03-31 vendmeanto &0 Pago

fLUREp Y Ve_ngﬁmo T Fage

2002-03-31 Mensiments 820,64 Nio Pago
2002-03-31 Vencimanto 224064 NEa Page
2002-04-30 Wencimanto B240,64 NEo Page

.cellistCatg

.calListSubData
callistSubDataB

b o

JcallistCatgB

109

PRIMAVERA WebCentral SDK Manual

Appendix

Appendix 1 — Business Entity Article

Imports Primavera.Platform.Engine.Entities

<Serializable(), BusinessEntityAttribute ("KNB_Articles", "CE1CA692-1864-4806-ACC5-3E2355590B15")> _
Public Class Article

Inherits BusinessEntityBase
#Region "Private Variables"

Private m date As DateTime
Private m_author As String
Private m title As String
Private m_summary As String
Private m body As String

Private m_image As String
#End Region
#Region "Public Properties"

<BusinessEntityField ("Date")>
Public Property [Date] () As DateTime
Get
Return m date
End Get
Set (ByVal Value As DateTime)
m_date = Value
End Set

End Property

<BusinessEntityField ("Author")> _
Public Property Author () As String
Get
Return m_author
End Get
Set (ByVal Value As String)
m_author = Value
End Set

End Property

<BusinessEntityField("Title")> _
Public Property Title() As String
Get
Return m_title
End Get
Set (ByVal Value As String)
m_title = Value
End Set

End Property

<BusinessEntityField ("Summary")> _

110

PRIMAVERA WebCentral SDK Manual

111

PRIMAVERA WebCentral SDK Manual

Appendix 2 - Business Service

Imports Primavera.Platform
Imports Primavera.Platform.Engine.Entities

Imports Primavera.Platform.Engine.Business

<BusinessServiceAttribute (GetType (Data.Articles))> _
Public Class Articles

Inherits BusinessServiceBase

#Region "Editing"

Public Function Edit (ByVal Context As EngineContext, ByVal Id As Guid) As Entities.Article
Return CType (BaseEdit (Context, Id), Entities.Article)

End Function

Public Function EditField(ByVal Context As EngineContext, ByVal Id As Guid, ByVal Field As
String) As Object
Return BaseEditField(Context, Id, Field)

End Function

Public Function EditFields (ByVal Context As EngineContext, ByVal Id As Guid, ByVal ParamArray
Fields () As String) As Fields
Return BaseEditFields (Context, Id, Fields)

End Function
#End Region
#Region "Updating"
Public Sub Update (ByVal Context As EngineContext, ByVal Article As Entities.Article)
BaseUpdate (Context, CType (Article, BusinessEntityBase))
End Sub
Public Sub UpdateField (ByVal Context As EngineContext, ByVal Id As Guid, ByVal Field As String,
ByVal Value As Object)
BaseUpdateField (Context, Id, Field, Value)
End Sub
Public Sub UpdateFields (ByVal Context As EngineContext, ByVal Id As Guid, ByRef Fields As
Fields)
BaseUpdateFields (Context, Id, Fields)
End Sub
#End Region
#Region "Existing"
Public Function Exists (ByVal Context As EngineContext, ByVal Id As Guid) As Boolean
Return BaseExists (Context, Id)
End Function

#End Region

#Region "Removing"

112

PRIMAVERA WebCentral SDK Manual

Public Sub Remove (ByVal Context As EngineContext, ByVal Id As Guid)
BaseRemove (Context, Id)

End Sub

#End Region

#Region "Locking"

Public Sub LockUI (ByVal Context As EngineContext, ByVal Id As Guid)
BaseLockUI (Context, Id)
End Sub

Public Sub UnlockUI (ByVal Context As EngineContext, ByVal Id As Guid)
BaseUnlockUI (Context, Id)
End Sub

#End Region

#Region "Validations"

Public Overloads Function ValidateUpdate (ByVal Context As EngineContext, ByVal Article As
Entities.Article, ByRef OutMessage As String, Optional ByVal FieldsToValidate As String = "*") As
Boolean

Return BaseValidateUpdate (Context, CType (Article, BusinessEntityBase), OutMessage,
FieldsToValidate)

End Function

Public Overloads Function ValidateRemove (ByVal Context As EngineContext, ByVal Id As Guid,
ByRef OutMessage As String) As Boolean
Return BaseValidateRemove (Context, Id, OutMessage)

End Function

#End Region

#Region "Cloning"

Protected Overrides Function BaseClone (ByVal Context As EngineContext, ByVal Id As Guid) As
Guid
INICIO:
Try
Context.BeginTransaction ()

Dim cloneId As Guid = MyBase.BaseClone (Context, Id)

'TODO: clonar classes de detalhe que proventura existam.

Context.CommitTransaction ()

Return cloneId

Catch ex As Exception
Context.RollBackTransaction ()
If Context.VerifyLockException (ex) Then GoTo INICIO

Throw ex

End Try

End Function

113

PRIMAVERA WebCentral SDK Manual

Public Function Clone (ByVal Context As EngineContext, ByVal Id As Guid) As Guid
Return BaseClone (Context, Id)

End Function

#End Region

#Region "Security"

Protected Overloads Overrides Function BaseVerifyEditPermission (ByVal Context As EngineContext,
ByVal ID As Guid, ByRef OutMessage As String) As Boolean
Return MyBase.BaseVerifyEditPermission (Context, ID, OutMessage)

End Function

Protected Overloads Overrides Function BaseVerifyUpdatePermission (ByVal Context As
EngineContext, ByVal Entity As BusinessEntityBase, ByRef OutMessage As String, Optional ByVal
FieldsToValidate As String = "*") As Boolean

Return MyBase.BaseVerifyUpdatePermission (Context, Entity, OutMessage, FieldsToValidate)

End Function

Protected Overrides Function BaseVerifyNewPermission (ByVal Context As EngineContext, ByVal
Entity As BusinessEntityBase, ByRef OutMessage As String) As Boolean
Return MyBase.BaseVerifyNewPermission (Context, Entity, OutMessage)

End Function

Protected Overloads Overrides Function BaseVerifyRemovePermission (ByVal Context As
EngineContext, ByVal ID As Guid, ByRef OutMessage As String) As Boolean
Return MyBase.BaseVerifyRemovePermission (Context, ID, OutMessage)

End Function

Public Overloads Function VerifyEditPermission (ByVal Context As EngineContext, ByVal ID As
Guid, ByRef OutMessage As String) As Boolean
Return BaseVerifyEditPermission (Context, ID, OutMessage)

End Function

Public Overloads Function VerifyNewPermission (ByVal Context As EngineContext, ByVal Article As
Entities.Article, ByRef OutMessage As String) As Boolean
Return BaseVerifyNewPermission (Context, CType (Article, BusinessEntityBase), OutMessage)

End Function

Public Overloads Function VerifyRemovePermission (ByVal Context As EngineContext, ByVal ID As
Guid, ByVal OutMessage As String) As Boolean
Return BaseVerifyRemovePermission (Context, ID, OutMessage)

End Function
Public Overloads Function VerifyUpdatePermission (ByVal Context As EngineContext, ByVal Article
As Entities.Article, ByVal OutMessage As String) As Boolean
Return BaseVerifyUpdatePermission (Context, CType (Article, BusinessEntityBase), OutMessage)

End Function

#End Region

End Class

PRIMAVERA WebCentral SDK Manual

Appendix 3 - Article Web User Control (HTML)

115

PRIMAVERA WebCentral SDK Manua

Appendix 4 - Article Web User Control (Code behind)

Public Class Article

Inherits Primavera.Platform.WebUI.WebComponentBase
#Region " Web Form Designer Generated Code "

'This call is required by the Web Form Designer.

<System.Diagnostics.DebuggerStepThrough () > Private Sub InitializeComponent ()

End Sub

Protected WithEvents litImage As System.Web.UI.WebControls.Literal
Protected WithEvents 1blTitle As System.Web.UI.WebControls.Label
Protected WithEvents lblSummary As System.Web.UI.WebControls.Label
Protected WithEvents 1lblBody As System.Web.UI.WebControls.Label
Protected WithEvents lblAuthor As System.Web.UI.WebControls.Label

'NOTE: The following placeholder declaration is required by the Web Form Designer.
'Do not delete or move it.

Private designerPlaceholderDeclaration As System.Object

Private Sub Page Init (ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Init
'"CODEGEN: This method call is required by the Web Form Designer
'Do not modify it using the code editor.
InitializeComponent ()

End Sub
#End Region
Private m_article As Entities.Article

Private Sub Page Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
If Not Request ("ArticleID") Is Nothing Then
Dim ArticleID As Guid = New Guid(Request ("ArticleID"))
LoadArticle (ArticlelID)
ShowArticle ()
Else
Me.Visible = False
End If
End Sub

Private Sub LoadArticle(ByVal articlelId As Guid)
m article = Business.Proxy.Articles.Edit (WebContext.User.EngineContext,
articleId)
End Sub

116

PRIMAVERA WebCentral SDK Manual

117

PRIMAVERA WebCentral SDK Manua

Appendix 5 - Article List Web User Control (HTML)

<%@ Control Language="vb" AutoEventWireup="false" Codebehind="ArticleList.ascx.vb"
Inherits="Primavera.KnowledgeBase.WebUI.ArticleList"
TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>
<asp:Datalist id="1lstArtigos" runat="server">
<ItemTemplate>
<table>
<tr >
<td><%# DataBinder.Eval (Container.Dataltem, "Image")$></td>
<td>
<table>
<tr>
<td><a href = <%# GetDetailPageUrl (DataBinder.Eval (Container.Dataltem, "ID")) %>
class="LinkText">
<%# DataBinder.Eval (Container.Dataltem, "Title")$%></td>
</tr>
<tr>
<td><%# DataBinder.Eval (Container.Dataltem, "Author")$%></td>
</tr>
<tr>
<td><%# DataBinder.Eval (Container.Dataltem, "Summary")$></td>
</tr>
<tr>
<td><%# DataBinder.Eval (Container.DataItem, "Date")$%$></td>
</tr>
</table>
</td>
</tr>
</table>
</ItemTemplate>

</asp:DataList>

118

PRIMAVERA WebCentral SDK Manua

Appendix 6 - Article List Web User Control (Code behind)

Public Class Articlelist

Inherits Primavera.Platform.WebUI.WebComponentBase
#Region " Web Form Designer Generated Code "

'This call is required by the Web Form Designer.

<System.Diagnostics.DebuggerStepThrough () > Private Sub InitializeComponent ()
End Sub

'NOTE: The following placeholder declaration is required by the Web Form Designer.
'Do not delete or move it.

Private designerPlaceholderDeclaration As System.Object

Private Sub Page Init (ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Init
'CODEGEN: This method call is required by the Web Form Designer
'Do not modify it using the code editor.
InitializeComponent ()

End Sub
#End Region

Private Sub Page Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
LoadArticles ()
End Sub

Private Sub LoadArticles ()
Dim strSgl As String = "SELECT * FROM KNB Articles ORDER BY [date]"
Dim tblArtigos As DataTable =
Primavera.Platform.Engine.Business.List.List (WebContext.User.EngineContext, strSqgl)
lstArtigos.DataSource = tblArtigos
lstArtigos.DataBind ()
End Sub

Public Function GetDetailPageUrl (ByVal articleId As Guid) As String
Dim guidCompArticleDetail As Guid = New Guid("B6B669F2-35B2-43al-A03D-
7325EEB2B082")
Return String.Format ("ComponentRender.aspx?ComponentID={0}&ArticleID={1}",
guidCompArticleDetail, articleId)
End Function

End Class

119

PRIMAVERA WebCentral SDK Manua

Appendix 7 — SQL Script for the KnowledgeBase

if exists (select * from dbo.sysobjects
where id = object id(N'[dbo].[KNB Articles]') and OBJECTPROPERTY (id,
N'IsUserTable') = 1)
drop table [dbo].[KNB Articles]
GO

CREATE TABLE [dbo].[KNB Articles] (

[ID] [uniqueidentifier] NOT NULL,
[Date] [datetime] NULL,
[Author] [nvarchar] (100) NULL,
[Title] [nvarchar] (250) NULL,
[Summary] [nvarchar] (500),
[Body] [nvarchar] (500) NULL,
[Image] [nvarchar] (250) NULL

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[KNB Articles] WITH NOCHECK ADD
CONSTRAINT [PK KNB Articles] PRIMARY KEY CLUSTERED
(
[ID]
) ON [PRIMARY]
GO

INSERT INTO [dbo].[KNB Articles] (ID, [Date],Author,Title,Summary,Body, [Image])
VALUES (NEWID(),GETDATE (), 'Jim Button', 'Desenvolvendo um Mbédulo', 'This article
describes ..."',
'Para desenvolver um Médulo WEBC é imprescindivel comegar por uma leitura
adequada...',
'')
INSERT INTO [dbo].[KNB Articles] (ID, [Date],Author,Title,Summary,Body, [Image])

VALUES (NEWID(),GETDATE (), 'Laura Jones', 'Integragdo’', 'Discutindo a integragdo

v
’

'Este assunto é susceptivel de levantar alguma polemica. Apesar de existir
bastante documentacédo sobre este tema ...',

'"')

120

PRIMAVERA WebCentral SDK Manua

Appendix 8 - Article Administration Details Control (HTML)

<%@ Control Language="vb" AutoEventWireup="false"
CodeBehind="ArticleAdminDetail.ascx.vb"
Inherits="Primavera.KnowledgeBase.WebUI.ArticleAdminDetail" %>

<%@ Register TagPrefix="WebC" Namespace="Infragistics.WebUI.WebSchedule"
Assembly="Infragistics2.WebUI.WebDateChooser.v6.2, Version=6.2.20062.34,
Culture=neutral, PublicKeyToken=7dd5c3163f2cd0cb" %>

<%Q@ Register TagPrefix="WebC" TagName="WebImageSelection"
Src="../Primavera.Platform/WebImageSelection.ascx" %>

<%@ Register TagPrefix="WebC" TagName="WebImageSelectionPopUpButton"
Src="../Primavera.Platform/WebImageSelectionPopUpButton.ascx" %>

S

The following script will include the necessary java script to handle a web based

HTML editor, which we'll use in this example for composing the article
-—>
<SCRIPT language="javascript">
<l==

_editor _url = "<%=GetCurrentPortalURL (Request) $>";

_editor template = "<%="WebTemplates/" & WebContext.Portal.Template & "/Styles/" &
System.Enum.GetName (GetType (Primavera.Platform.Security.Entities.PortalConfig.FontStyle
s), WebContext.Portal.Font) & ".css"$%>";

var win_ie ver = parseFloat (navigator.appVersion.split ("MSIE") [1]);

if (navigator.userAgent.indexOf ('Mac') >= 0) { win _ie ver = 0; }

if (navigator.userAgent.indexOf ('Windows CE') >= 0) { win_ie ver = 0; }

if (navigator.userAgent.indexOf ('Opera') >= 0) { win ie ver = 0; }

if (win ie ver >= 5.5) {

document.write('<scr' + 'ipt src="' + editor url+
'/SystemFiles/Scripts/editor contentmanagement.js"');

document.write (' language="Javascriptl.2"></scr' + 'ipt>');

} else { document.write('<scr'+'ipt>function editor generate() { return false;
}</scr'+'ipt>'); 1}
1) ==
</SCRIPT>

<asp:Panel ID="panelArticleDetails" runat="server" Visible="True">

gl==
The panel contains all controls which are necessary to insert/edit a
new/existing
item; it will demonstrate some special controls, such as the Infragistics
DateTime
picker as well as the HTML editor, for composing the article body. This panel
will
be hidden whenever the user clicked the image button. To select an image for
the
message this panel will be hidden and the image selection panel (see below)
will be
shown.
-=>

121

PRIMAVERA WebCentral SDK Manua

<table>
<tr>
<!-- Articles Publishing Date (Infragistics DateTime Picker) -->
<td class="width s alignRight">Date</td>
<td class="width s">
<WebC:webdatechooser id="txtDate" runat="server"></WebC:webdatechooser>
</td>
</tr>
<tr>
<!-- Articles Autor Name -->
<td class="width s alignRight">Author</td>
<td class="width_ x1">
<asp:textbox id="txtAutor" onblur="this.className='data input width x1';"
onfocus="this.className='data input over width x1';"
runat="server" CssClass="data_ input width x1" MaxLength="50">
</asp:textbox>
</td>
</tr>
<tr>
<!-- Articles Image (PRIMAVERA WebCentral Platform WebImageSelection) -->
<td class="width s alignRight">Image</td>
<td class="width x1">
<asp:textbox id="txtImage" onblur="this.className='data input width 1';"
onfocus="this.className='data input over width 1';"
runat="server" CssClass="data input width 1" MaxLength="50">
</asp:textbox>
<WebC:WebImageSelectionPopUpButton id="WebImageSelectionPopUpButtonl"
runat="server"></WebC:WebImageSelectionPopUpButton>
</td>
</tr>
<tr>
<!-- Articles Title -->
<td class="width s alignRight">Title</td>
<td class="width x1">
<asp:textbox i1d="txtTitle" onblur="this.className='data input width x1';"
onfocus="this.className='data input over width x1';"
runat="server" CssClass="data input width x1" MaxLength="50">
</asp:textbox>
</td>
</tr>
<tr>
<!-- Articles Message Body (HTML editor) -->
<td class="width s alignRight">Article</td>
<td class="width_ x1">
<asp:textbox id="txtArticle" onblur="this.className='data_ input width x1';"
onfocus="this.className='data input over width x1';"
runat="server" CssClass="data input width x1" MaxLength="50">
</asp:textbox>
</td>

</tr>

122

PRIMAVERA WebCentral SDK Manua

</table>

<!-- dinitialize the HTML editor (control id txtArticle) -->

<script language="javascript" defer>
editor_generate ('<%=ID2Name (Me.ClientID) $>:txtArticle');

</script>

<!-- command button area header -->

<table cellSpacing="0" cellPadding="0" width="100%" border="0">

<tr>
<TD class="filter top 1"></TD>
<TD class="filter top c"></TD>
<TD class="filter top r"></TD>

</tr>

</table>

<!-- command button area content -->

<table class="filter" cellSpacing="0" cellPadding="0" width="100%" border="0">
<tr>
<td class="filter 1"> </td>
<td>
<table class="filter btns" cellSpacing="0" cellPadding="0" border="0">
<tr>
<td>
<asp:button id="btnConfirm"
onmouseover="this.className='btn m color over';"
onmouseout="this.className="'btn m color';"
runat="server" CssClass="btn m color"
Text="Confirm"></asp:button></td>
<td>
<asp:button id="btnBack"
onmouseover="this.className='btn m color over';"
onmouseout="this.className='btn m color';"
runat="server" CssClass="btn m color"
Text="Back"></asp:button></td>
</tr>
</table>
</td>
<td class="filter r"> </td>
</tr>
</table>
<!-- command button area footer -->
<table cellSpacing="0" cellPadding="0" width="100%" border="0">
<tr>
<td class="filter bottom 1"></td>
<td class="filter bottom c"></td>
<td class="filter bottom r"></td>
</tr>
</table>
</asp:Panel>
<asp:panel id="panelImageSelection" runat="server" Visible="False">
<!-- image selection control panel; will only be shown when the user clicked on

the image selection button in the details panel. -->

123

PRIMAVERA WebCentral SDK Manua

<WebC:webimageselection id="controlImageSelection"
runat="server"></WebC:webimageselection>

</asp:panel>

124

PRIMAVERA WebCentral SDK Manua

Appendix 9 - Article Administration Details User Control (VB)

Public Partial Class ArticleAdminDetail

As

Inherits Web.UI.UserControl

'declare events to signal the parent user control or form that the user clicked
'on the back button or the confirm button. the parent user control is responsible
'for reacting the correct way on these events.

Public Event BackButtonClicked ()

Public Event ArticleSaved()

'declare user controls referenced from the PRIMAVERA WebCentral Platform

'here in the code behind file, using the exact variable name as stated in the ascx

Protected WithEvents WebImageSelectionPopUpButtonl
Primavera.Platform.WebUI.WebImageSelectionPopUpButton

Protected WithEvents controlImageSelection

As Primavera.Platform.WebUI.WebImageSelection

'private attributes, which are initialized by the parent user control using the
'public properties this class exposes
Private webContext As Primavera.Platform.WebUI.WebContext

Private visualizationMode As VisualizationMode

'<summary>

' This property allows access to vital context information, that are necessary to

' implement access to the system's database (such as information about user,

v

organization, portal, etc). This property needs to be initialized from the

parent

are

' user control.

'</summary>
Public Property WebContext () As Primavera.Platform.WebUI.WebContext
Get
Return webContext
End Get
Set (ByVal Value As Primavera.Platform.WebUI.WebContext)
_webContext = Value
End Set

End Property

'<summary>

' This property allows access to the edit mode; this control needs to know if we

' currently editing an existing, or inserting a new record. This property needs to
' Dbe initialized from the parent user control.

'</summary>

Public Property Mode () As VisualizationMode
Get

125

PRIMAVERA WebCentral SDK Manua

Return _visualizationMode
End Get
Set (ByVal Value As VisualizationMode)
_visualizationMode = Value
Select Case visualizationMode
Case VisualizationMode.Insertion
CreateBusinessEntity ()
Case VisualizationMode.Edition
EditBusinessEntity ()
End Select
ShowBusinessEntity ()
End Set

End Property 'Mode

'<summary>
' The parent user control needs to initialize this property whenever the user is

' editing an existing record. This property needs to be initialized with the
Al

primary key of the record to be edited.
'</summary>
Public Property ArticleId() As Guid
Get
Return CType (Session ("ArticleId"), System.Guid)
End Get
Set (ByVal Value As System.Guid)
Session ("ArticleId") = Value
End Set

End Property

'<summary>

' The following property persists an business entity object of the record that is
' currently edited. This property is for internal use only.

'</summary>

Private Property BusinessEntity() As Entities.Article

Get
If Not Session("ArticleBEO") Is Nothing Then
Return CType (Session ("ArticleBEO"), Entities.Article)
End If

Return Nothing
End Get
Set (ByVal Value As Entities.Article)
Session ("ArticleBEO") = Value
End Set

End Property

'<summary>

v

The following method will be called in the ASCX file to retrieve an HTML valid

v

identifier to reference the textbox control used as HTML editor (see also ASCX)
'</summary>

Protected Function ID2Name (ByVal ID As String) As String

126

PRIMAVERA WebCentral SDK Manua

Return System.Text.RegularExpressions.Regex.Replace (ID, " (?<tok>[a-zA-Z0-
91+4)_", "S{tok}:")

End Function 'ID2Name

'<summary>

' The following method will be called to build a correct portal URL, for including
' JavaScript files for the HTML editor (see also ASCX)

'</summary>

Protected Function GetCurrentPortalURL (ByVal Request As HttpRequest) As String

Dim currentPortalUrl As String = String.Format ("http://{0}/{1}",
Request.Url.Host, Request.Url.Segments(1l))

Return currentPortalUrl.TrimEnd ("/")

End Function 'GetCurrentPortalURL

'<summary>

' The following method will cleanup the session object which are used by this
' user control. You should call this method whenever the in the session state
' persisted objects are no longer necessary.

'</summary>

Private Sub ClearSessionObjects ()

Session.Remove ("ArticleId")

Session.Remove ("ArticleBEO")

End Sub 'ClearSessionObjects

'<summary>

' The following method will be called whenever it is necessary to initialize

' the user control with values from the currently loaded business entity. This
' 1s basically everytime the case, when a user edits an existing record.
'</summary>

Private Sub ShowBusinessEntity ()

txtAutor.Text = Me.BusinessEntity.Author
txtArticle.Text = Me.BusinessEntity.Body
txtDate.Value = Me.BusinessEntity.Date
txtTitle.Text = Me.BusinessEntity.Title

txtImage.Text = Me.BusinessEntity.Image

'update image selection control
WebImageSelectionPopUpButtonl.ImageHtml = Me.BusinessEntity.Image
WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

End Sub 'ShowBusinessEntity

'<summary>

' The following method will be called whenever the user wishes to create

127

PRIMAVERA WebCentral SDK Manua

' a new record. This method initializes a new business entity object.
'</summary>

Private Sub CreateBusinessEntity()

'initialize new business entity

Dim businessEntity As New Entities.Article
businessEntity.ID = Guid.NewGuid()
businessEntity.Author = WebContext.User.UserName
businessEntity.Date = DateTime.Now
businessEntity.Image = String.Empty
businessEntity.Title = String.Empty
businessEntity.Body = String.Empty

'initialize image button
WebImageSelectionPopUpButtonl.ImageHtml = businessEntity.Image

WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

Me.BusinessEntity = businessEntity

End Sub 'CreateBusinessEntity

'<summary>

' The following method will be called to initialize the internally used business

' entity object for being edited. It will load the specified record from database;
' the record's primary key needs to be set before.

'</summary>

Private Sub EditBusinessEntity ()

Dim businessLayer As New Business.Articles
Me.BusinessEntity = businesslLayer.Edit (WebContext.User.EngineContext,

Me.ArticleId)

'initialize image button
WebImageSelectionPopUpButtonl.ImageHtml = Me.BusinessEntity.Image

WebImageSelectionPopUpButtonl.SetConfigurationParameters ()

End Sub 'EditBusinessEntity

'<summary>

' The following method will be called whenever it is necessary to write all
changes

' down to database. This method will update the existing record, which was edited,
or

' inserts a new record to the database.

'</summary>

Private Sub UpdateBusinessEntity ()

Me.BusinessEntity.Author = txtAutor.Text
Me.BusinessEntity.Title = txtTitle.Text

Me.BusinessEntity.Body = txtArticle.Text

128

PRIMAVERA WebCentral SDK Manua

Me.BusinessEntity.Date = txtDate.Value

Me.BusinessEntity.Image = txtImage.Text

Dim businessLayer As New Business.Articles

businessLayer.Update (WebContext.User.EngineContext, Me.BusinessEntity)
End Sub 'UpdateBusinessEntity

'<summary>

v

The following event handler will be called whenever the page loads; place all
' initialization code here.

'</summary>

Protected Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Me.Load

Me.WebImageSelectionPopUpButtonl.PanelMaster = Me.panelArticleDetails
Me.WebImageSelectionPopUpButtonl.PanelDetail = Me.panellImageSelection
Me.WebImageSelectionPopUpButtonl.WebImageSelectionControl =

Me.controlImageSelection
If Not Me.IsPostBack Then

Me.WebImageSelectionPopUpButtonl.SetConfigurationParameters ()
End Sub 'Page Load

'<summary>

v

The following event handler will be called whenever the user clicked on the
"Back"

' button. No changes should be written down to database; the parent will receive

an

event and should hide this details control and show the table filter grid.

'</summary>

Private Sub cmdBack Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles btnBack.Click

RaiseEvent BackButtonClicked ()

ClearSessionObjects ()
End Sub 'cmdBack Click

'<summary>

' The following event handler will be called whenever the user clicked on the

"Confirm"

v

button. All changes should be written down to database; ; the parent will
receive an

v

event and should hide this details control and show the table filter grid.

'</summary>

Private Sub cmdSave Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles btnConfirm.Click

Me.UpdateBusinessEntity ()

129

PRIMAVERA WebCentral SDK Manual

130

PRIMAVERA WebCentral SDK Manua

Appendix 10 — Article Administration User Control (HTML)

<%@ Control Language="vb" AutoEventWireup="false"

CodeBehind="ArticleAdmin.ascx.vb" Inherits="Primavera.KnowledgeBase.WebUI.ArticleAdmin"

oo

>
<!-- please not the corrected "Src" values for the "Register" tags; if you drag and
drop
user controls to the designer page, please make sure that the "Src" attribute has
the correct value - based on the final location on the production server. -->
<%@ Register TagPrefix="WebC" TagName="WebGridTableFilter"
Src="../Primavera.Platform/WebGridTableFilter.ascx" %>
<%@ Register TagPrefix="WebC" TagName="WebGridMessage"
Src="../Primavera.Platform/WebGridMessage.ascx" %>
<%@ Register Src="ArticleAdminDetail.ascx"

TagName="ArticleAdminDetail" TagPrefix="WebC" %>

<!-- the following user control will be used to issue messages to the user -->
<WebC:webgridmessage id="messageBox" runat="server"
visible="False"></WebC:webgridmessage>
<asp:Panel ID="panelArticleMaster" Visible="True" runat=server>
<!-- this panel will handle the grid that shows all available business entities to
the user. this "master" grid also implements common funcionalities like insert
new item, edit/clone and remove the current item. this panel will be hidden by

the code behind whenever the details (ArticleAdminDetail) needs to be shown. -

<table id="tableArticles" runat="server" cellspacing="0" cellpadding="0"
width="100%" border="0">
<tr>
<td>
<WebC:webgridtablefilter id="articleAdminMasterGrid" visible="True"
runat="server" width="100%" height="20px" DoPagination="True"
AllowDefaultPaging="True" AllowDefaultSorting="True"
AllowSelectingRecordsPerPage="True"
DefaultPagingMode="NumericPages"
DefaultPagingPosition="Top" PageSize="10" PageSizeIndex="0">
</WebC:webgridtablefilter>
</td>
</tr>
</table>
</asp:Panel>
<asp:Panel ID="panelArticleDetails" Visible="False" runat=server>
<!-- this panel will handle the current entities details. it is shown whenever the
user edits the currently selected or inserts a new record. we could have done
this also in a separate aspx file. -->
<table>
<tr>
<td>

<WebC:ArticleAdminDetail id="articleAdminEntityDetails" runat="server">

131

PRIMAVERA WebCentral SDK Manual

132

PRIMAVERA WebCentral SDK Manua

Appendix 11 - Article Administration User Control (VB)

Imports Primavera.Platform.WebUI

Imports Primavera.Platform.WebUI.Controls

Public Enum VisualizationMode
Consultation
Insertion
Edition

End Enum

Partial Public Class ArticleAdmin

Inherits Primavera.Platform.WebUI.WebComponentBase

'declare user controls referenced from the PRIMAVERA WebCentral Platform

'here in the code behind file, using the exact variable name as stated in the ascx

Protected WithEvents messageBox As Primavera.Platform.WebUI.Controls.WebGridMessage

Protected WithEvents articleAdminMasterGrid As
Primavera.Platform.WebUI.Controls.WebGridTableFilter

'<summary>
' This UserControl must handle various modes, as it joins the master and
' detail form. The following property will persist the current state, using the
' Session object. The initial state is consultation, which means, the master
' grid view is displayed. Whenever the user edits or inserts a new record, the
' master grid needs to be hidden and the details pane needs to be shown.
'</summary>
Private Property Mode () As VisualizationMode
Get
If Session("ArticleAdminMode") Is Nothing Then
Return VisualizationMode.Consultation
Else
Return CType (Session ("ArticleAdminMode"), VisualizationMode)
End If
End Get
Set (ByVal Value As VisualizationMode)
Select Case Value
Case VisualizationMode.Consultation
panelArticleMaster.Visible = True
panelArticleDetails.Visible = False
Case VisualizationMode.Insertion
panelArticleMaster.Visible = False
panelArticleDetails.Visible = True
articleAdminEntityDetails.Mode = VisualizationMode.Insertion
Case VisualizationMode.Edition
panelArticleMaster.Visible = False
panelArticleDetails.Visible = True

articleAdminEntityDetails.Mode = VisualizationMode.Edition

133

PRIMAVERA WebCentral SDK Manua

End Select
Session ("ArticleAdminMode") = Value
End Set

End Property 'Mode

'<summary>

v

The following method is used to show a message (or an error) to the user;

' it will show the platform's message box user control and initialize the

' icon/text to be shown.
'</summary>
Private Sub ShowMessage (ByVal Type As Platform.WebUI.Controls.WebGridMessageType,

ByVal Title As String, ByVal Message As String)

messageBox.Visible = True
messageBox.MessageType = Type
messageBox.MessageTitle = Title
messageBox.MessageText = Message

messageBox.Refresh ()

End Sub 'ShowMessage

'<summary>

v

The following method will be called when the page loads; it should be used
' to initialize the page's controls.

'</summary>

Protected Sub Page Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

'initialize the table filter grid; we'll need to initialize this control with
module name

'as well as table filter object (defined in the solutions Modules project),
which will be

'used to query the information from the database.

articleAdminMasterGrid.ModuleName = "Primavera.KnowledgeBase"

articleAdminMasterGrid.TableFilterID = New Guid("{25662350-E994-45dd-9C75-
340AA517357D}")

'initialize the details user control's web context property

articleAdminEntityDetails.WebContext = Me.WebContext

'if not postback: initialize the forms mode to its default (consultation)
If Not Me.IsPostBack Then
Mode = VisualizationMode.Consultation
articleAdminMasterGrid.RefreshDataSource ()
End If
End Sub 'Page Load

'<summary>

' The following method will be called whenever the user clicked on the "New"

button

134

PRIMAVERA WebCentral SDK Manua

' of the table filter grid. The method will simply change the mode to insertion,
which
' will cause the table filter grid to be hidden and the details view to be shown.
'</summary>
Private Sub articleAdminMasterGrid CreateRecord(ByVal Sender As Object)

Handles articleAdminMasterGrid.CreateRecord

Me.Mode = VisualizationMode.Insertion

End Sub 'articleAdminMasterGrid CreateRecord

'<summary>
' The following method will be called whenever the user clicked on the "Edit"
button

' of the table filter grid. The method will initialize the details view unique id

' property and set the edition mode, which will cause the table filter to be
hidden

' and the details view to be shown.

'</summary>

Private Sub articleAdminMasterGrid EditRecord(ByVal Sender As Object,
ByVal selectedRowIdentifier As
Platform.WebUI.Controls.WebGridTableFilter.TableFilterKeyValueCollection,

ByRef cancel As Boolean) Handles articleAdminMasterGrid.EditRecord

Try
articleAdminEntityDetails.ArticleId = selectedRowIdentifier ("ID")

Mode = VisualizationMode.Edition

Catch ex As System.Security.SecurityException
Mode = VisualizationMode.Consultation

ShowMessage (WebGridMessageType.Warning, String.Empty, ex.Message)

Catch ex As Exception
Mode = VisualizationMode.Consultation

ShowMessage (WebGridMessageType.Error, String.Empty, ex.Message)

End Try

End Sub 'articleAdminMasterGrid EditRecord

'<summary>
' The following method will be called whenever the user clicked on the "Clone"
button

' of the table filter grid. The code here demonstrates how to clone a existing
record.

'</summary>

Private Sub articleAdminMasterGrid CloneRecord(ByVal Sender As Object,
ByVal selectedRowIdentifier As
Platform.WebUI.Controls.WebGridTableFilter.TableFilterKeyValueCollection,

ByRef cancel As Boolean) Handles articleAdminMasterGrid.CloneRecord

135

PRIMAVERA WebCentral SDK Manua

Try
Dim articleId As System.Guid = CType (selectedRowIdentifier ("ID"),
System.Guid)
Dim businessLayer As New Business.Articles
businessLayer.Clone (WebContext.User.EngineContext, articleld)

articleAdminMasterGrid.RefreshDataSource ()

Catch ex As System.Security.SecurityException

ShowMessage (WebGridMessageType.Warning, String.Empty, ex.Message)

Catch ex As Exception

ShowMessage (WebGridMessageType.Error, String.Empty, ex.Message)

End Try

End Sub 'articleAdminMasterGrid CloneRecord

'<summary>

' The following method will be called whenever the user clicked on the "Delete"
button,

' and confirmed the client-side confirmation message. The code here shows how to
delete

' the currently selected record.

'</summary>

Private Sub articleAdminMasterGrid DeleteRecord(ByVal Sender As Object,
ByVal selectedRowIdentifier As
Platform.WebUI.Controls.WebGridTableFilter.TableFilterKeyValueCollection,

ByRef cancel As Boolean) Handles articleAdminMasterGrid.DeleteRecord

Try
Dim articleId As System.Guid = CType (selectedRowIdentifier ("ID"),
System.Guid)
Dim businessLayer As New Business.Articles
businessLayer.Remove (WebContext.User.EngineContext, articleld)

articleAdminMasterGrid.RefreshDataSource ()

Catch ex As System.Security.SecurityException

ShowMessage (WebGridMessageType.Warning, String.Empty, ex.Message)

Catch ex As Exception

ShowMessage (WebGridMessageType.Error, String.Empty, ex.Message)

End Try

End Sub 'articleAdminMasterGrid DeleteRecord

'<summary>

' The following method will be called whenever the user clicked on the "Refresh"

button.

136

PRIMAVERA WebCentral SDK Manua

' It will simply refresh the master grid and bind it to the data source.
'</summary>
Private Sub articleAdminMasterGrid Refresh (ByRef Cancel As Boolean)

Handles articleAdminMasterGrid.Refresh

articleAdminMasterGrid.RefreshDataSource ()

End Sub 'articleAdminMasterGrid Refresh

'<summary>

' The following method will be called whenever the user clicked on the "Confirm"

button

' in the details view. This method sets the mode to consultation, which will cause
the

' table filter grid to be shown and the details control to be hidden.

'</summary>

Private Sub articleAdminEntityDetails ArticleSaved()
Handles articleAdminEntityDetails.ArticleSaved

Mode = VisualizationMode.Consultation

articleAdminMasterGrid.RefreshDataSource ()

End Sub 'articleAdminEntityDetails ArticleSaved

'<summary>

' The following method will be called whenever the user clicked on the "Back"
button in

' the details view. This method simply sets the mode to consultation, which will
cause the

' table filter grid to be shown and the details control to be hidden.

'</summary>

Private Sub articleAdminEntityDetails BackButtonClicked ()

Handles articleAdminEntityDetails.BackButtonClicked

Mode = VisualizationMode.Consultation

End Sub 'articleAdminEntityDetails BackButtonClicked

End Class 'ArticleAdmin.ascx

137

PRIMAVERA WebCentral SDK Manua

Appendix 12 - PropertyBag Entity Class (ArticleList.vb)

Imports Primavera.Platform.Engine.Entities

Namespace PropertyBags

<Serializable (), SerializationEntity("{A461C193-98FB-4a52-94AF-7EB6574B470E}",
"1.0M)>

Public Class Articlelist

Inherits PropertyBagBase

Private mNumArticles As Integer
Private mOrder As ArticleListOrder
Private mIncludeImage As Boolean
Private mIncludeSummary As Boolean
Private mIncludeAuthor As Boolean

Private mDetailPageID As Guid

Public Property NumArticles () As Integer
Get
Return mNumArticles
End Get
Set (ByVal Value As Integer)
mNumArticles = Value
End Set
End Property

Public Property IncludelImage() As Boolean
Get
Return mIncludeImage
End Get
Set (ByVal Value As Boolean)
mIncludeImage = Value
End Set

End Property

Public Property IncludeSummary () As Boolean
Get
Return mIncludeSummary
End Get
Set (ByVal Value As Boolean)
mIncludeSummary = Value
End Set

End Property

Public Property IncludeAuthor () As Boolean
Get

Return mIncludeAuthor

138

PRIMAVERA WebCentral SDK Manual

139

PRIMAVERA WebCentral SDK Manua

Appendix 13 — Remoting Layer ArticleList.vb

Imports Primavera.Platform.Engine.Entities

Imports Primavera.Platform.Engine.IRemoting

Namespace PropertyBags
Public Class Articlelist
Inherits Primavera.Platform.Engine.Remoting.RemoteServiceBase

Implements IRemoting.PropertyBags.IArticlelist

Public Function Edit (ByVal RemoteContext As RemoteEngineContext,
ByVal ID As System.Guid) As Entities.PropertyBags.ArticlelList
Implements IRemoting.PropertyBags.IArticlelList.Edit

Dim BSO As New Business.PropertyBags.ArticleList
Return BSO.Edit (RemoteContext.EngineContext, ID)

End Function

Public Sub Update (ByVal RemoteContext As RemoteEngineContext,
ByVal PropertyBag As Entities.PropertyBags.ArticlelList)
Implements IRemoting.PropertyBags.IArticlelList.Update

Dim BSO As New Business.PropertyBags.ArticleList
BSO.Update (RemoteContext.EngineContext, PropertyBag)
End Sub

Public Function Exists (ByVal RemoteContext As RemoteEngineContext,
ByVal ID As System.Guid) As System.Boolean _
Implements IRemoting.PropertyBags.IArticleList.Exists

Dim BSO As New Business.PropertyBags.ArticleList
Return BSO.Exists (RemoteContext.EngineContext, ID)

End Function

Public Sub Remove (ByVal RemoteContext As RemoteEngineContext,
ByVal ID As System.Guid)

Implements IRemoting.PropertyBags.IArticleList.Remove

Dim BSO As New Business.PropertyBags.ArticleList
BSO.Remove (RemoteContext.EngineContext, ID)
End Sub

Public Function Clone (ByVal RemoteContext As RemoteEngineContext,
ByVal ID As System.Guid) As System.Guid

Implements IRemoting.PropertyBags.IArticlelList.Clone

Dim BSO As New Business.PropertyBags.ArticleList

Return BSO.Clone (RemoteContext.EngineContext, ID)

140

PRIMAVERA WebCentral SDK Manual

141

PRIMAVERA WebCentral SDK Manua

Appendix 14 - The Configuration Dialog (ArticleList.vb)

Imports Primavera.Platform.Engine.IRemoting
Imports Primavera.KnowledgeBase.Entities

Imports Primavera.KnowledgeBase.IRemoting

Public Class Articlelist
'<summary>
' The following private attribute will store the article lists current
' configuration settings.
'</summary>
Private articlelistPropertyBag As Entities.PropertyBags.ArticlelList

Private componentlLink As Platform.WinUI.ComponentLinkDialogOutput

'<summary>

' custom c'tor

'</summary>

Public Sub New (ByVal WinContext As WinContext)
MyBase.New (WinContext)
InitializeComponent ()

End Sub 'New

'<summary>
' Call the following method to configure the properties for a new
' component.
'</summary>
Public Function INew () As Guid
InitializeForm/()
NewPropertyBag ()
ShowPropertyBag ()
If Me.ShowDialog() = DialogResult.OK Then
Return articlelListPropertyBag.ID
Else
Return Nothing
End If

End Function 'INew

'<summary>
' Call the following method to configure the properties for an already
' existing component.
'</summary>
Public Sub IEdit (ByVal PropertyBagID As Guid)
InitializeForm/()
EditPropertyBag (PropertyBaglD)
ShowPropertyBag ()
Me.ShowDialog ()
End Sub 'IEdit

'<summary>

142

PRIMAVERA WebCentral SDK Manua

v

The following method is called to initialize a new property bag

v

entity, and is called whenever the user places a new component
' on a page.

'</summary>

Private Sub NewPropertyBag()

articlelistPropertyBag = New Entities.PropertyBags.Articlelist
With articlelistPropertyBag

.ID Guid.NewGuid

.IncludeAuthor = True
.IncludeImage = True
.IncludeSummary = True
.NumArticles = 5
.Order = Entities.PropertyBags.ArticlelListOrder.OrderByDate
.DetailPageID = Guid.Empty
End With

End Sub

'<summary>

v

The following method will be called to read an existing property
' Dbag from the WebCentral database.
'</summary>
Private Sub EditPropertyBag(ByVal PropertyBagID As Guid)
Dim Context As Platform.Engine.IRemoting.RemoteEngineContext =
MyBase.CreateRemoteEngineContext ()
Dim Proxy As IRemoting.IProxy = Me.CreateRemoteProxy (GetType (IRemoting.IProxy))
articlelistPropertyBag = Proxy.PropertyBags.ArticlelList.Edit (Context,
PropertyBaglD)
End Sub

'<summary>

The following method will be called to store the property bags
' attributes to the WebCentral database.
'</summary>
Private Sub UpdatePropertyBag ()
Dim Context As Platform.Engine.IRemoting.RemoteEngineContext =
MyBase.CreateRemoteEngineContext ()
Dim Proxy As IRemoting.IProxy = Me.CreateRemoteProxy (GetType (IRemoting.IProxy))
Proxy.PropertyBags.ArticlelList.Update (Context, articleListPropertyBag)
End Sub

'<summary>
' The following method will be called to initialize the dialog's
' user interface controls with the property bag's values.
'</summary>

Private Sub ShowPropertyBag ()

With articlelistPropertyBag

txtArticleCount.Value = .NumArticles
cmbArticleSort.SelectedIndex = .Order
chkShowAuthor.Checked = .IncludeAuthor
chkShowImage.Checked = .IncludeImage

143

PRIMAVERA WebCentral SDK Manua

chkShowSummary.Checked = .IncludeSummary

componentLink = Platform.WinUI.Dialogs.ComponentLinkEdit (WinContext,
.DetailPagelID)

If Not componentLink Is Nothing Then

txtArticleDetaillink.Text = componentLink.PageName
Else
txtArticleDetaillink.Text = "<Default>"
End If
End With
End Sub
'<summary>

v

The following method will be called to read the values in the

' dialog's user interface to to property bag object.

'</summary>

Private Sub ReadPropertyBag()

With articlelListPropertyBag
.NumArticles = txtArticleCount.Value
.Order = cmbArticleSort.SelectedIndex
.IncludeAuthor = chkShowAuthor.Checked
.IncludeImage = chkShowImage.Checked
.IncludeSummary = chkShowSummary.Checked
.DetailPageID = componentLink.PagelD

End With

End Sub

'<summary>

' The following method initializes the dialogs controls

'</summary>

Private Sub InitializeForm/()
cmbArticleSort.Items.Clear ()
cmbArticleSort.Items.Add ("Article Date")
cmbArticleSort.Items.Add ("Article Author")
cmbArticleSort.Items.Add ("Article Title")

cmbArticleSort.SelectedIndex = 0

txtArticleCount .Maximum

Il Il
e
&

txtArticleCount .Minimum

End Sub

'<summary>
' The following method is called whenever the user clicked the Confirm
' button. It will shift the configuration data from the user interface
' to the property bag object and store the changes in the Enterprise

' Portals database.

'</summary>

Private Sub btnConfirm Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles cmdConfirm.Click

ReadPropertyBag ()

UpdatePropertyBag ()

144

PRIMAVERA WebCentral SDK Manua

Me.DialogResult = DialogResult.OK
End Sub

'<summary>

' The following method is called whenever the user clicked the Cancel

' button. The user interface closes and no changes are done.
'</summary>
Private Sub btnCancel Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles cmdCancel.Click
Me.DialogResult = DialogResult.Cancel
End Sub

'<summary>

' The following method is called whenever the user clicked the Browse

' button, to select a page that contains the ArticleDetail component.
'</summary>
Private Sub btnLinkDetalhe Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles cmdBrowseHyperlink.Click
Dim dlgInput As New Platform.WinUI.ComponentLinkDialogInput ()
dlgInput.ComponentID = New Guid("{B6B669F2-35B2-43al-A03D-7325EER2B082}")
dlgInput.PortallID = WinContext.Portal.PortallID
dlgInput.PagelID = articlelListPropertyBag.DetailPagelD
Dim dlgOutput As Platform.WinUI.ComponentLinkDialogOutput =
Primavera.Platform.WinUI.Dialogs.ComponentLinkSelect (WinContext, dlgInput)
If Not dlgOutput Is Nothing Then
articleListPropertyBag.DetailPageID = dlgOutput.PagelD
ShowPropertyBag ()
End If
End Sub
End Class

145

PRIMAVERA WebCentral SDK Manua

Appendix 15 - Culture Dependent Entity (ArticleCulture.vb)

Imports Primavera.Platform.Engine.Entities

<Serializable(), BusinessEntityAttribute ("KNB ArticleCultures","4D741C19-2237-4691-
997F-F943799438D3")>
Public Class ArticleCulture

Inherits BusinessEntityBase

Private mArticleID As Guid
Private mCultureID As Guid
Private mTitle As String

Private mSummary As String

Private mBody As String

<BusinessEntityField("ArticleID")> _
Public Property ArticleID() As Guid
Get
Return mArticlelID
End Get
Set (ByVal Value As Guid)
mArticleID = Value
End Set

End Property

<BusinessEntityField ("CultureID")>
Public Property CultureID() As Guid
Get
Return mCulturelID
End Get
Set (ByVal Value As Guid)
mCultureID = Value
End Set

End Property

<BusinessEntityField ("Title")>
Public Property Title() As String
Get
Return mTitle
End Get
Set (ByVal Value As String)
mTitle = Value
End Set

End Property

<BusinessEntityField ("Summary")>
Public Property Summary () As String
Get

146

PRIMAVERA WebCentral SDK Manual

147

PRIMAVERA WebCentral SDK Manua

Appendix 16 — Culture Dependent Entity (ArticleCultures.vb)

Imports Primavera.Platform.Engine.Entities

<Serializable()> _
Public Class ArticleCultures

Inherits CollectionEntityBase

Public Sub Add(ByVal Value As ArticleCulture)
Me.List.Add (Value)
End Sub

Default Public Property Item(ByVal Index As Integer) As ArticleCulture
Get
Return CType (Me.List.Item(Index), ArticleCulture)
End Get
Set (ByVal Value As ArticleCulture)
Me.List.Item(Index) = Value
End Set

End Property

Default Public Property Item(ByVal ID As Guid) As ArticleCulture
Get
Dim Entity As ArticleCulture
For Each Entity In Me.List
If Entity.ID.Equals(ID) Then Return Entity
Next
Return Nothing
End Get
Set (ByVal Value As ArticleCulture)
Dim Entity As ArticleCulture
For Each Entity In Me.List
If Entity.ID.Equals(ID) Then
Entity = Value
Exit Property
End If
Next
Add (Value)
End Set
End Property

Public ReadOnly Property GetItemByArticleID(ByVal ArticleID As Guid) As
ArticleCulture
Get
Dim Entity As ArticleCulture
For Each Entity In Me.List
If Entity.ArticleID.Equals (ArticleID) Then Return Entity

Next

148

PRIMAVERA WebCentral SDK Manual

149

PRIMAVERA WebCentral SDK Manua

Appendix 17 — SQL Database Update Script

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[FK KNB ArticleCultures KNB Articles]') and OBJECTPROPERTY (id,
N'IsForeignKey') = 1)

ALTER TABLE [dbo].[KNB ArticleCultures] DROP CONSTRAINT

FK_KNB ArticleCultures KNB Articles

GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[KNB ArticleCultures]') and OBJECTPROPERTY (id, N'IsUserTable') = 1)
drop table [dbo].[KNB ArticleCultures]

GO

if exists (select * from dbo.sysobjects where id = object id(N'[dbo].[KNB Articles]"')
and OBJECTPROPERTY (id, N'IsUserTable') = 1)

drop table [dbo].[KNB Articles]

GO

CREATE TABLE [dbo].[KNB ArticleCultures] (
[ID] [uniqueidentifier] NOT NULL ,
[ArticleID] [uniqueidentifier] NULL ,
[CultureID] [uniqueidentifier] NULL ,
[Title] [nvarchar] (250) NULL ,
[Summary] [nvarchar] (500) NULL ,
[Body] [nvarchar] (500) NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[KNB_ArticleS] (
[ID] [uniqueidentifier] NOT NULL ,
[Date] [datetime] NULL ,

[Author] [nvarchar] (100) NULL ,
[Image] [nvarchar] (250) NULL ,
) ON [PRIMARY]
GO

ALTER TABLE [dbo].[KNB ArticleCultures] WITH NOCHECK ADD
CONSTRAINT [PK KNB ArticleCultures] PRIMARY KEY CLUSTERED
(
[ID]
) ON [PRIMARY]
GO

ALTER TABLE [dbo].[KNB Articles] WITH NOCHECK ADD
CONSTRAINT [PK KNB Articles] PRIMARY KEY CLUSTERED
(

150

PRIMAVERA WebCentral SDK Manua

[ID]
) ON [PRIMARY]
GO

ALTER TABLE [dbo].[KNB ArticleCultures] ADD
CONSTRAINT [FK KNB ArticleCultures KNB Articles] FOREIGN KEY
(
[ArticleID]
) REFERENCES [dbo].[KNB Articles] (
[ID]
),
CONSTRAINT [FK KNB ArticleCultures PLT Cultures] FOREIGN KEY
(
[CulturelID]
) REFERENCES [dbo].[PLT Cultures] (
[ID]

GO

DELETE FROM KNB ArticleCultures
DELETE FROM KNB Articles

DECLARE (@ArticleID uniqueidentifier

SET @ArticleID = NEWID()

INSERT INTO KNB Articles VALUES (@ArticleID,GETDATE (), 'Jim Button', '<img

src="UserFiles/Images/003.bmp" >')

INSERT INTO KNB_ArticleCultureS VALUES (NEWID(),@ArticleID, 'EA16D9A6-D662-4FEC-AB32-

A2EA62D6F2CB', 'Desenvolvendo um Mdéddulo', 'Este artigo descreve...',6 'Para desenvolver um

Médulo ePrimavera é imprescindivel comegcar por uma leitura adequada...')

INSERT INTO KNB ArticleCultures VALUES (NEWID(),Q@ArticleID, '9F9C7468-22A3-4414-B8F5-

596346EF4300', 'Developing an Module', 'This article describes ...','To build an new

ePrimavera Module, you should begin with a proper reading into ...")

SET @ArticleID = NEWID()

INSERT INTO KNB Articles VALUES (@ArticleID,GETDATE (), 'Laura Jones', '<img

src="UserFiles/Images/002.bmp" >")

INSERT INTO KNB ArticleCultures VALUES (NEWID(),QArticleID, 'EA16D9A6-D662-4FEC-AB32-

A2EA62D6F2CB', 'Integracédo', 'Discutindo a integragdo ...',6 'Este assunto é susceptivel

de levantar alguma polemica. Apesar de existir bastante documentacdo sobre este tema
o))

INSERT INTO KNB_ArticleCultureS VALUES (NEWID(),@ArticleID, '9F9C7468-22A3-4414-B8F5~-

596346EF4300', '"How to integrate', 'Talking about .NET integration ...',6 'This subject its

prone to some hot discussion, although there''s enough documentation on this theme
-")

151

PRIMAVERA WebCentral SDK Manua

Appendix 18 - Approval Workflow (Approvallnstances.vb)

Imports System.Resources
Imports Primavera.Platform.Engine.Entities
Imports Primavera.Platform.Modules.Entities

Imports Primavera.Platform.Services.Entities

Public Class Approvallnstances

Implements IApprovallnstances
Private MyModuleID As New Guid("{39%9af2e6e-e68e-4111-9410-24de9682421d}")

Public Function GetApprovalsForUser (ByVal objContext As EngineContext) As
ApprovalsPending _
Implements IApprovallnstances.GetApprovalsForUser
Dim objApprovalServices As New
Primavera.Platform.Services.Business.ApprovalServices
Dim objApprovalsPending As ApprovalsPending

Dim objApprovalPending As ApprovalPending

objApprovalsPending = objApprovalServices.GetApprovalInstancesPendingForUser (_
objContext, MyModulelD)
If (Not objApprovalsPending Is Nothing) Then
For Each objApprovalPending In objApprovalsPending
With objApprovalPending
Dim guidID As Guid
Dim strTitle As String = String.Empty
GetContentIDTitle (objContext, .ApprovallD, .TypeID, guidID,

strTitle)
.Title = strTitle
.TypeName = GetApprovalTypeName (.TypelD)
.URL = GetApprovalURL(.TypelD, guidID)
End With
Next
End If

Return objApprovalsPending

End Function

Public Function CanPerformApproval (ByVal objContext As EngineContext,
ByVal objApprovalInstance As Approvallnstance,
ByVal objCurrentState As ApprovalRuleState,
ByVal objCurrentApproval As ApprovalRuleApproval,
ByVal objApprovedState As ApprovalRuleState,
ByRef strErrors As String) As Boolean _

Implements IApprovallnstances.CanPerformApproval

152

PRIMAVERA WebCentral SDK Manua

Return True

End Function

Public Function CanPerformRejection (ByVal objContext As EngineContext,
ByVal objApprovalInstance As Approvallnstance,
ByVal objCurrentState As ApprovalRuleState,
ByVal objCurrentApproval As ApprovalRuleApproval,
ByVal objApprovedState As ApprovalRuleState,
ByRef strErrors As String) As Boolean

Implements IApprovallnstances.CanPerformRejection

Return True

End Function

Public Function PerformApproval (ByVal objContext As EngineContext,
ByVal objApprovallInstance As Approvallnstance,
ByVal objCurrentState As ApprovalRuleState,
ByVal objCurrentApproval As ApprovalRuleApproval,
ByVal objApprovedState As ApprovalRuleState,
ByRef strErrors As String) As Boolean _

Implements IApprovalInstances.PerformApproval

'Unlock and publish message (only at the end)

If (objApprovedState.StateType = ApprovalRuleStateTypeEnum.arstEndApproved)
Then

objContext.BeginTransaction ()

Try
UnlockAndPublish (objContext, objApprovallnstance.ID,

objApprovallnstance.ApprovalTypelID, True)

objContext.CommitTransaction ()

Catch ex As Exception
strErrors = ex.Message
objContext.RollBackTransaction ()
Return False

End Try

End If

'OK

Return True

End Function

Public Function PerformRejection (ByVal objContext As EngineContext,

ByVal objApprovallInstance As Approvallnstance,

153

PRIMAVERA WebCentral SDK Manua

ByVal objCurrentState As ApprovalRuleState,

ByVal objCurrentApproval As ApprovalRuleApproval,

ByVal objRejectedState As ApprovalRuleState,
ByRef strErrors As String) As Boolean _

Implements IApprovallnstances.PerformRejection

'Unlock and publish message (only at the end)

If (objRejectedState.StateType = ApprovalRuleStateTypeEnum.arstEndRejected)

Then

objContext.BeginTransaction ()

Try

UnlockAndPublish (objContext, objApprovallnstance.ID,

objApprovallnstance.ApprovalTypelD, False)
objContext.CommitTransaction ()
Catch ex As Exception
strErrors = ex.Message
objContext.RollBackTransaction ()
Return False

End Try

End If

'OK

Return True

End Function

Public Function GetContentInfo (ByVal objContext As EngineContext,

ByVal guidTypeID As System.Guid,

ByVal guidApprovalID As System.Guid) As ApprovalContentInfo

Implements IApprovallnstances.GetContentInfo

Dim guidID As Guid
Dim strTitle As String = String.Empty
Dim strURL As String = String.Empty

GetContentIDTitle (objContext, guidApprovallD,
strURL = GetApprovalURL (guidTypeID, guidID)

Dim objRes As New ApprovalContentInfo
With objRes

.ModuleID = MyModuleID

.TypeID = guidTypelD

.ID = guidID

.Title = strTitle

.URL = strURL
End With

guidTypelD,

guidiD,

strTitle)

154

PRIMAVERA WebCentral SDK Manua

Return objRes

End Function

Public Function TranslateSpecialGroup (ByVal objContext As EngineContext,
ByVal guidTypeID As System.Guid,
ByVal guidSpecialGroupID As System.Guid,
ByVal guidUserID As System.Guid,
ByVal strTagInfo As String) As System.Guid

Implements IApprovallnstances.TranslateSpecialGroup

Return Nothing

End Function

Private Sub UnlockAndPublish (ByVal objContext As EngineContext,
ByVal guidApprovalID As Guid,
ByVal guidTypeID As Guid,
ByVal blnPublish As Boolean)

'Get content ID

Dim guidID As Guid
Dim strTitle As String = String.Empty
GetContentIDTitle (objContext, guidApprovallD, guidTypeID, guidID, strTitle)

Dim objProxy As New Primavera.KnowledgeBase.Business.Proxy

If guidTypeID.Equals (ApprovalTypesIDs.Articles) Then

Dim objBSO As New Business.Articles

0bjBSO.UnLock (objContext, guidID)

If blnPublish Then objBSO.Publish (objContext, guidID)
End If

End Sub

Private Sub GetContentIDTitle (ByVal objContext As EngineContext,
ByVal guidApprovalID As Guid,
ByVal guidTypeID As Guid,
ByRef guidContentID As Guid,
ByRef strTitle As String)

If guidTypeID.Equals (ApprovalTypesIDs.Articles) Then
Dim objBSO As New Business.Articles
objBSO.GetContentFromRuleID (objContext, guidApprovalID, guidContentID,
strTitle)
End If

155

PRIMAVERA WebCentral SDK Manual

156

PRIMAVERA WebCentral SDK Manua

Appendix 19 - SQL Database Update Script

if exists (select * from dbo.sysobjects
where id = object id(N'[dbo].[FK KNB ArticleCultures KNB Articles]')
and OBJECTPROPERTY (id, N'IsForeignKey') = 1)

ALTER TABLE [dbo].[KNB ArticleCultures] DROP CONSTRAINT
FK KNB ArticleCultures KNB Articles

GO

if exists (select * from dbo.sysobjects
where id = object id(N'[dbo].[KNB ArticleCultures]')
and OBJECTPROPERTY (id, N'IsUserTable') = 1)

drop table [dbo].[KNB ArticleCultures]

GO

if exists (select * from dbo.sysobjects
where id = object id(N'[dbo].[KNB Articles]')
and OBJECTPROPERTY (id, N'IsUserTable') = 1)

drop table [dbo].[KNB Articles]

GO

CREATE TABLE [dbo].[KNB ArticleCultures] (
[ID] [uniqueidentifier] NOT NULL ,
[ArticleID] [uniqueidentifier] NULL ,
[CultureID] [uniqueidentifier] NULL ,
[Title] [nvarchar] (250) NULL ,
[Summary] [nvarchar] (500) NULL ,
[Body] [nvarchar] (500) NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[KNB_ArticleS] (
[ID] [uniqueidentifier] NOT NULL ,
[Article] [nvarchar] (50) NOT NULL ,
[Date] [datetime] NULL ,
[Author] [nvarchar] (100) NULL ,
[Image] [nvarchar] (250) NULL ,
[Published] [bit] NULL ,
[Locked] [bit] NULL ,
[ApprovalID] [uniqueidentifier] NULL
) ON [PRIMARY]
GO

ALTER TABLE [dbo].[KNB ArticleCultures] WITH NOCHECK ADD
CONSTRAINT [PK KNB ArticleCultures] PRIMARY KEY CLUSTERED
(
[ID]
) ON [PRIMARY]

157

PRIMAVERA WebCentral SDK Manua

GO

ALTER TABLE [dbo].[KNB Articles] WITH NOCHECK ADD
CONSTRAINT [PK KNB Articles] PRIMARY KEY CLUSTERED
(
[ID]
) ON [PRIMARY]
GO

ALTER TABLE [dbo].[KNB ArticleCultures] ADD
CONSTRAINT [FK KNB ArticleCultures KNB Articles] FOREIGN KEY
(
[ArticleID]
) REFERENCES [dbo].[KNB Articles] (
[ID]
),
CONSTRAINT [FK KNB ArticleCultures PLT Cultures] FOREIGN KEY
(
[CulturelID]
) REFERENCES [dbo].[PLT Cultures] (
[ID]

GO

DELETE FROM KNB ArticleCultures
DELETE FROM KNB Articles

DECLARE (@ArticleIDl uniqueidentifier

SET @ArticleIDl = NEWID ()

INSERT INTO KNB Articles VALUES (@ArticleIDl, 'Article 1', GETDATE(),'Jim Button',
'',1,0,NULL)

INSERT INTO KNB_ArticleCultureS VALUES (NEWID(),@ArticleID1,
'EA16D9A6-D662-4FEC-AB32-A2EA62D6F2CB', 'Desenvolvendo um Mdbédulo',
'Este artigo descreve...',
'Para desenvolver um Médulo ePrimavera é imprescindivel comec¢ar por uma leitura
adequada...")

INSERT INTO KNB_ArticleCultureS VALUES (NEWID(),@ArticleID1,
'9F9C7468-22A3-4414-B8F5-596346EF4300"', 'Developing an Module',
'This article describes ...'","'

To build an new ePrimavera Module, you should begin with a proper reading into ...'")

DECLARE Q@ArticleID2 uniqueidentifier

SET @ArticleID2 = NEWID()

INSERT INTO KNB Articles VALUES (QArticleID2, 'Article 2',GETDATE (), 'Laura Jones',
'',1,0,NULL)

INSERT INTO KNB ArticleCultures VALUES (NEWID(),QArticleID2,
'EA16D9A6-D662-4FEC-AB32-A2EA62D6F2CB', 'Integracéo’,
'Discutindo a integragdo ...',
'Este assunto é susceptivel de levantar alguma polemica. Apesar de existir bastante

documentacdo sobre este tema ...'")

158

PRIMAVERA WebCentral SDK Manua

INSERT INTO KNB ArticleCultures VALUES (NEWID(),@ArticleID2,
'9F9C7468-22A3-4414-B8F5-596346EF4300"', "How to integrate',
'Talking about .NET integration ...'

’

'This subject its prone to some hot discussion, although there''s enough documentation

on this theme ...")

DECLARE @CategoryTypeID uniqueidentifier

SET @CategoryTypeID = 'B9F475F4-2C54-463f-8FD9-F6318EDAEOT7L"

DELETE FROM PLT CategoryCultures

WHERE CategoryID IN (SELECT ID FROM PLT Categories WHERE CategoryTypeID =
@CategoryTypelID)
DELETE FROM PLT CategoryPermissions
WHERE CategoryID IN (SELECT ID FROM PLT Categories WHERE CategoryTypeID =
@CategoryTypelID)
DELETE FROM PLT Categories
WHERE ID IN (SELECT ID FROM PLT Categories WHERE CategoryTypeID = @CategoryTypelD)
DECLARE (@CategoryID uniqueidentifier
SET @CategoryID = NEWID()
INSERT INTO PLT Categories
([ID],CategoryTypelD, Category, ParentID, FullName, ApprovalRulelID)
VALUES (QCategoryID, @CategoryTypelD, 'Artigos técnicos',NULL, '\Artigos técnicos\',NULL)
INSERT INTO PLT CategoryCultures ([ID],CategoryID,CulturelID, [Name])
VALUES (NEWID (), @CategoryID, '"EAL16D9A6-D662-4FEC-AB32-A2EA62D6F2CB"', 'Artigos técnicos')
INSERT INTO PLT CategoryPermissions
VALUES (NEWID(),@CategoryID ,1,'E8220F2B-01A9-4A04-A4A9-21DE20CD3325',1,1,1,1,1)
INSERT INTO PLT CategoryPermissions
VALUES (NEWID(),@CategoryID ,1, '4AA6432C-40A8-457A-9555-5021814CB9%¢6C"',1,1,1,1,1)
INSERT INTO PLT CategoryPermissions

VALUES (NEWID(),@CategoryID ,1,'866B5E19-E098-4838-B51C-86BC522E9FD1"',1,1,1,1,1)

INSERT INTO PLT EntityCategories VALUES (NEWID(),QArticleIDl,@CategoryID)
INSERT INTO PLT EntityCategories VALUES (NEWID (),QArticleID2,@CategoryID)

© 2010 PRIMAVERA Business Software Solutions S. A. All rights reserved.

159

